首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
公路运输   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
为研究脑机接口(BCI)在交通运输中的应用,减少因疲劳驾驶导致的交通安全事故,提出基于前额脑电(EEG)信号多尺度小波对数能量熵的驾驶疲劳检测方法。首先,设计驾驶仿真模拟试验,利用脑电帽采集26名被试清醒驾驶和疲劳驾驶的前额EEG信号,试验过程中,使用主观检测方法每隔20 min对被试进行问询;其次,应用MATLAB对采集到的EEG数据进行预处理,基于2种驾驶状态形成被试初始样本数据集;进而,在该数据集基础上,利用多尺度熵的概念,提取EEG信号小波对数能量熵(WLE)特征,同时提取经典模糊熵(FE)特征进行比较分析;然后,运用极限学习机(ELM)对提取的特征数据集进行快速有效的精准分类,并使用留一交叉验证法进行验证评估;最后,对比经典FE分类表现,并结合多种性能指标对驾驶疲劳检测结果进行综合比较。研究结果表明:在本文试验条件下,基于多尺度WLE(MWLE)的前额EEG疲劳识别率显著高于基于多尺度FE(MFE)的识别率,其理论平均正确率达91.8%;基于多尺度熵的EEG信号特征提取方法能有效提高驾驶疲劳识别效果和算法效率;多种性能指标表明前额EEG的WLE可以作为衡量驾驶疲劳的有效生理指标;结果验证了采用基于ELM对MWLE的前额EEG信号进行驾驶疲劳检测方法的有效性和实用性,有助于促进可穿戴BCI在疲劳驾驶预警中的应用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号