首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
公路运输   1篇
水路运输   1篇
  2016年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Modelling and Control of an Automated Vehicle   总被引:8,自引:0,他引:8  
We present a vehicle model that includes the vehicle dynamics and a vehicle tire model. The model developed is then used for conducting steering analysis of an automated vehicle. We test the developed model on a step lane change maneuver and propose a model-reference based controller for remote control of a vehicle. Stability analysis of the closed-loop system using die Lyapunov approach is included.  相似文献   
2.
It is analytically difficult to calculate roll damping of ships due to the effects of viscosity. Therefore, computational fluid dynamics (CFD) has become a powerful tool in predicting roll damping recently. The unsteady flow around a forced rolling hull section with bilge keels can be calculated using a commercial URANS code which includes the viscous effects. In this study, two-dimensional (2D) roll damping calculations for a S60 midsection with bilge keels including free surface effects are performed for shallow draft case. The first objective of the study is to show whether the URANS code can be used to predict roll damping coefficient correctly. The second one is to show why Ikeda’s estimation method is insufficient at shallow draft case. Sinusoidal forced roll motion calculation method of roll damping moment with the help of a sliding interface and a fixed roll axis is successfully applied to predict roll damping coefficient. The calculations are carried out for different roll motion periods and amplitudes to validate the accuracy of the URANS code for different cases. Numerical results are compared with experiments, which were carried out at the towing tank facility of Osaka Prefecture University (OPU), and Ikeda’s estimation method. The results show that the URANS code is capable of predicting roll damping coefficients in a good agreement with experimental results and can be used further to develop a better model for prediction of roll damping.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号