首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
公路运输   1篇
水路运输   1篇
  2020年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
ABSTRACT

Solving the berth allocation problem (BAP) in ports is not trivial where the berth resources are limited and various sizes of vessels arrive with dramatically dissimilar loads. Especially in real scenarios, arriving vessels are accepted for a berth with the first come first served (FCFS) priority rule. This study proposes a decision support system coupled with a simulation optimization module based on the swarm-based Artificial Bee Colony optimization algorithm for solving the BAP. The proposed methodology was implemented for the Izmir port in Turkey. To investigate the influences of the vessel priorities on the BAP, four different experimental scenarios based on the single (SQM) and multiple queue models (MQM) were coupled with FCFS and proposed hybrid queue priority (HQP) rule. The results indicated that SQM scenarios were superior to MQM scenarios in a manner of minimizing the average vessel waiting times and the implementation of a dynamic berth allocation strategy for the MQM significantly decreases the vessel waiting times. Results of the SQM also imply that utilization of the HQP approach further minimizes the average vessel waiting times and increases the berth utilization and port throughput without yielding excessive waiting times for the larger vessels compared with the FCFS priority rule.  相似文献   
2.
Summary This paper addresses the problems ensuing with the human being who is controlling the technical system, especially problems related to his skill levels, driving habits, capabilities and decisions (especially when impaired by drugs, fatigue or physical handicaps). It may be possible to improve the ability of a driver to operate a vehicle safely if certain parameters in the control of the vehicle are adjusted according to the driver's normal characteristics. Value has already been established for tailoring certain attributes such as seat, pedals, steering wheel position and mirrors to a given driver through memory functions. This research concentrates on assessing a driver's operating characteristics and modifying the control to improve safe operation of the vehicle on a real-time basis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号