首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   3篇
铁路运输   3篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
选取某线路2条磨损较为严重的500m半径曲线钢轨(曲线A及曲线B)作为研究对象,进行针对性打磨方案设计,并采用多体动力学软件UM建立车辆-轨道多体系统动力学模型,研究分析钢轨打磨对小半径曲线车辆动力学特性影响。结果表明:打磨后钢轨廓形得到改善,轨面波磨及掉块得到较好整治,曲线A及曲线B钢轨质量指数TQI均有显著下降,最大值分别下降32.40%、23.49%;打磨后曲线A及曲线B等效锥度显著降低,当横移量为0~10mm内,等效锥度均在0.15以下;曲线A及曲线B左右股与车轮接触区域相对打磨前更加均匀,3点接触得到较好处理;打磨后1~8位车轮与曲线A及曲线B钢轨廓形接触时接触斑内纵/横向蠕滑率最大值、磨耗功最大值、轮重减载率最大值均有显著降低,轮轨接触关系、轮轨磨耗及车辆运行安全性得到较好的改善;同时,车辆通过曲线A及曲线B时车体垂向/横向加速度频率及幅值降低,横向/垂向加速度最大值分别减小46.74%/80.04%、46.33%/78.96%,车辆运行稳定性得到提升。  相似文献   
2.
根据现场实际运用经验,提出一种高速铁路道岔运用状态综合评估方法。综合评估方法基于道岔服役信息,以及道岔检测数据,通过建立道岔运用状态综合评估模型,计算道岔各参数得分,综合评估道岔运用状态。以京沪高速铁路某车站6号道岔为例,采用道岔运用状态综合评估方法,评估道岔运用状态。经核实,6号道岔运用状态的评估结果与现场实际相符。综合评估方法能够准确评估高速铁路道岔运用状态。评估结果可用于指导维护道岔,为道岔“计划修”与“状态修”提供参考。  相似文献   
3.
选取京沪高铁1组轨面病害较为严重的道岔作为道岔钢轨病害打磨研究对象,进行长期跟踪观测,并分析打磨前后轮轨几何关系,建立车辆—道岔耦合无砟轨道系统动力分析模型,研究对比打磨前后高速列车动力学特性。结果表明:通过道岔钢轨病害打磨,钢轨轨面病害得到较好改善,但道岔钢轨工作边出现棱角,轨面出现双光带现象;轮轨等效锥度均未在理想范围以内;列车通过道岔岔中区域时,高速列车动力学特性得到较好的改善,但列车通过岔前及岔后区域时,高速列车动力学特性不如打磨前。建议高速道岔打磨时需要充分考虑轮轨关系,不应仅仅对轨面病害进行打磨。  相似文献   
4.
对打磨前后的高速铁路道岔打磨受限区特征断面钢轨廓形进行测量,建立车辆-道岔耦合动力学模型仿真模拟列车通过打磨前后道岔打磨受限区的动力学特性,并对车辆动力学性能进行现场实测。结果表明:廓形打磨后,道岔打磨受限区内侧工作边明显低于打磨前,且降低值得到明显优化,全新车轮及磨耗车轮与打磨后的道岔受限区特征断面接触时的等效锥度均得到明显改善且均在理想范围内;在不同运行速度下,全新车轮及磨耗车轮与打磨后的道岔受限区特征断面接触时,构架及车体横向加速度均减小,列车轮轨接触关系得到优化,列车运行横向稳定性得以提升。现场实测结果进一步验证了廓形打磨对列车运行横向稳定性的改善作用。  相似文献   
5.
选陇海线1条磨损较为严重的小半径曲线下股调边轨作为研究对象,进行个性化打磨方案设计,对轮轨几何接触状态进行分析,并进行车辆-轨道多体系统动力学仿真。结果表明:打磨后调边轨面掉块、轨面光带、钢轨磨耗速率及钢轨质量指数TQI得到显著改善;通过轮轨接触几何分析可知,打磨后等效锥度及轮轨接触点均得到优化,列车运行稳定性及轮轨接触状态得到改善;通过车辆-轨道多体系统动力学仿真研究可知,打磨后1~4位车轮与调边轨接触时接触斑内磨耗功最大值、轮重减载率最大值、车体垂向/横向加速度均降低,轮轨磨耗特性、列车运行安全性及稳定性均得到改善。  相似文献   
6.
为了准确分析轨道车辆在较宽频域范围内的振动特性及传递规律,提出了一种基于弹性车辆系统动力学仿真模型的工况传递路径分析(OTPA)方法;建立了包含柔性轮对、构架和车体的弹性车辆系统动力学模型和与之结构参数完全相同的刚体模型,从时域的角度研究了轮对、构架和车体的振动特性,并将仿真结果与实测数据进行了对比,探究了弹性处理方式对车辆振动的影响,得出了振动能量的衰减规律;从频域的角度研究了在实测钢轨垂向不平顺的激励下,弹性车辆系统的振动特性;运用OTPA方法仿真分析了钢轨垂向不平顺结合车轮多边形的复杂工况下,车辆系统从轮对到构架至车体这一自下而上的振动传递过程当中垂向振动的主要传递路径。研究结果表明:车辆系统的弹性处理方式对整车振动有重要影响,弹性模型的轮对、构架和车体的振动加速度相比于刚体模型在中低频范围内更接近实测值,轴箱、构架和车体的最大振动幅值分别为250~450、30~40、3~4 m·s-2,由轮对至构架到车体,振动幅值呈一个数量级衰减;弹性模型的平稳性指标大于刚体模型,并且速度越大趋势越明显,车辆的弹性振动对运行性能的影响随着速度的提高而增大;车辆系统在复杂工...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号