首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The stress distribution surrounding the fastener hole in thick laminate mechanical joints is complex. It is time-consuming to analyze the distribution using finite element method. To accurately and efficiently obtain the stress state around the fastener hole in multi-bolt thick laminate joints, a global-local approach is introduced. In the method, the most seriously damaged zone is 3D modeled by taking the displacement field got from the 2D global model as boundary conditions. Through comparison and analysis there are the following findings: the global-local finite element method is a reliable and efficient way to solve the stress distribution problem; the stress distribution around the fastener hole is quite uneven in through-the-thickness direction, and the stresses of the elements close to the shearing plane are much higher than the stresses of the elements far away from the shearing plane; the out-of-plane stresses introduced by the single-lap joint cannot be ignored due to the delamination failure; the stress state is a useful criterion for further more complex studies involving failure analysis.  相似文献   
2.
Accurately and efficiently predicting the load sharing of multi~bolt thick laminate joints is necessary to quicken the optimization of the large-scale structures over various design variables, and a two-dimensional (2D) finite element method (FEM) is introduced to meet such a demand. The deformation contributions of the joint zone are analyzed and calculated separately, including the shearing deformation of the fasteners shank, the bending deformation of the fasteners shank, and the bearing deformation of the fasteners and joint plates. These deformations are all transferred and incorporated into the components of the fastener's flexibility. In the 2D finite element model, the flexibilities of the beam elements and bush elements are used to simulate different components of the fastener's flexibility. The parameters of the beam elements which include the bending moment of inertia and intersection area, and the parameters of the bush elements which include the stiffness in different directions, are all obtained through equalizing the fasteners flexibilities. In addition, the secondary bending effect introduced by the single-lap joints is also taken into account to verify the flexibilities of the fasteners in practical application. The proposed FEM is testified to be more accurate than the traditional 2D FEMs and more efficient than the three-dimensional (3D) FEM in solving load sharing problem of multi-bolt single-lap thick laminate joints. With the increase of joint plates' thickness, the advantages of the proposed method tend to be more obvious. The proposed 2D FEM is an effective tool for designing bolted joints in large-scale composite structures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号