首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2015年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This paper presents a numerical analysis of the dynamic transient behaviors of undersea cables. In this numerical study, the governing equations based on Euler-Bernoulli beam theory are adopted, and they can satisfy many applications no matter what the magnitude of the cable tension is. The nonlinear coupled equations are solved by a popular central finite difference method, and the numerical results of transient behaviors are presented when several kinds of surrounding conditions, such as different towing speeds of surface vessel, different currents and waves with various frequencies and amplitudes, are exerted. Then a detailed comparison of the results, including the upper end tension and cable shape in time-domain, is made under the above external excitations, and finally the possible reasons for these are further explained.  相似文献   
2.
This paper presents a numerical investigation into the dynamics of marine cables which are extensively used in offshore industry. In this numerical study, the Euler-Bernoulli beam model is adopted to develop the governing equations of the cable. Bending stiffness is considered to cope with the low tension problem in local area of towing cable, and thus a more accurate solution with the consideration of the axial elongation can be given.The derived strongly-coupled and nonlinear governing equations are solved by a second-order accurate, implicit,and large time step stable central finite difference method. The quadratically convergent Newton-Raphson iteration method is applied to solving the discrete nonlinear algebraic equations. Then a towed array sonar system(TASS)problem is studied. The numerical solutions agree reasonably well with the experimental data and the simulated results of the references. The specified program of the present paper shows great robustness with high efficiency.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号