首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
水路运输   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
This paper presents the experimental results of a study on the effects of axial applied tension on the vibration amplitude, the suppression of vibration, hydrodynamic force coefficients and in-line (IL) and cross-flow (CF) frequency responses during vortex-induced vibration of a horizontally mounted flexible cylinder with a low mass ratio (cylinder’s mass/mass of displaced water), low bending-stiffness, and high aspect ratio (length/diameter 200) in the subcritical Reynolds number regime (Re = 1000–16000). The effect of tension is studied by applying four different tensions. It was revealed that higher applied tensions, which reduce the vibration amplitude, could significantly raise the hydrodynamic lift force coefficient. In addition, higher applied tensions generate narrower lock-in bandwidths. After the highest vibration amplitude and during the region of lower vibration amplitudes, within the first lock-in region (in the first mode of vibration), power spectral densities show broad bandwidth, while within other regions and higher modes they appear narrow-banded. The ratio of the dominant IL to CF frequency is approximately equal to 2.0, except for the lower reduced velocities, where the ratio values reach 3.83 for the highest tension accompanied by widening of the region in which this ratio is over 2.0. This ratio is 2.76 for the lowest applied tension with a narrower region.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号