首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
水路运输   4篇
综合运输   2篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1998年   1篇
  1982年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   
2.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem.  相似文献   
3.
ABSTRACT

It is only recently that researchers have attempted to directly link transport to models of well-being and in turn try to map transport's linkages to well-being outcomes. This paper seeks to add to this new literature by introducing a dynamic model of well-being, which highlights the different domains that make up well-being, and in turn — through providing one of the most holistic and comprehensive discussions of the current well-being literature — provide an evaluation of our current understanding of transport's relationship to well-being. The paper also seeks to highlight the different dimensions and complexities of seeking to monitor and improve well-being through transport policy. It will in turn be argued that the varied and complex sets of outcomes that arise from transport policy interventions, and the multiple ways in which they affect well-being, make a well-being approach (that measures policy outcomes in terms of units of well-being) of particular value for policy-makers. However, due to the complexities in comparing positive well-being outcomes, it is argued that the best use of well-being evidence for the transport sector may be to try to minimise the negative effects on well-being caused by policy outcomes.  相似文献   
4.
5.
Effect of mixing on microbial communities in the Rhone River plume   总被引:1,自引:0,他引:1  
The biological processes involved during mixing of a river plume with the marine underlying water were studied off the Rhone River outlet. Samples of suspended and dissolved matter were collected while tracking a drifting buoy. Three trajectories were performed, at 2-day intervals, under different hydrological and meteorological situations. A biological uptake was evidenced from ammonium (NH4) and phosphate (PO4) shortage, indicating an early “NH4-dependent” functioning occurring before the well-known “NO3-based” cycle. The different ratios between NH4, NO3 and PO4, as a function of salinity, were discussed to detail the preferential use in PO4 and NH4. Salinity zones with enhanced bacterial production, high chlorophyll a concentration, as well as DOC, NH4 and PO4 consumption were evidenced from 20 to 35 in salinity. It was shown that the successive abundance of bacteria and phytoplankton during transfer reflected the competition for PO4 of both communities. On the Rhone River plume, the role played by temperature, light conditions and suspended matter upon biological activity seems relatively minor compared to salinity distribution and its related parameter: nutrient availability. It can be concluded that biological uptake in the Rhone River plume was closely related to the dilution mechanism, controlled itself by the dynamics of the plume. In windless conditions and close to the river mouth, the density gradient between marine and river water induced limited exchanges between the nutrient-rich freshwater and the potential consumers in the underlying marine water. Consequently, little biological activity is observed close to the river mouth. Offshore, mixing is enhanced and a balance is reached between salinity tolerance and nutrient availability to form a favourable zone for marine phytoplankton development. This can be quite far from the river mouth in case of a widely spread plume, corresponding to high river discharge. Under windy and wavy conditions, the plume freshwater is early and rapidly mixed, so that the extension of the “enhanced production zone” is drastically reduced and even bacteria could not benefit from the fast mixing regime induced.  相似文献   
6.
Privatisation has led to a growing interest in more complex contractual forms designed to give public transport operators the incentives for effort that maximise value for money. Contract theory provides a rich research basis for selecting an appropriate contractual form, with an emphasis on the effects of uncertainty and asymmetric information. To date, however, there have been few applications of contract theory in the field of transport. This paper identifies the key empirical results from the multi-disciplinary literature to help transport researchers and practitioners place contractual decision-making in the broader theoretical context, suggesting aspects of transport contracting that merit future research.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号