首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
水路运输   3篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)—panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   
2.
This paper investigates the open water performance of the Ka-series propellers at various pitch and expanded area ratios in combination with the 19A duct by employing the panel method panMARE and the RANSE code ANSYS-CFX. An efficient method, Caly, is developed in order to generate the 3D-geometry and the surface numerical grid of the ducted propellers. Caly can be coupled with ANSYS-TurboGrid to automatically produce 3D-grids for the RANSE solver. The numerical results are compared with published experimental data and the flow details are concluded and compared. The influences that the grid resolution, the panel arrangements of duct and blade, and the flow in gap between inside wall of the duct and blade tip on the numerical results are studied. Grids verification, turbulence model dependency analysis and Reynolds number scantling are also discussed.  相似文献   
3.
Wake alignment models are always included in the modern panel codes for marine propeller analysis. The wake alignment algorithms influence directly the rate of convergence and the accuracy of calculations. In the present work, firstly, four different numerical methods to implement the wake alignment algorithms for the steady calculation are described. They perform quite differently in terms of convergence history and convergence rate. The comparison with the other methods shows that the direct application of the unsteady method leads to a much slower convergence rate. Secondly, high-order numerical methods including second-order and fourth-order Runge–Kutta methods are introduced into the wake alignment, which results in high-order wake alignment algorithms. The analysis of the results shows that the high-order methods generate a different wake geometry from the low-order method. The thrust coefficient and torque coefficient have also been compared.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号