首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   1篇
水路运输   2篇
综合运输   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 218 毫秒
1
1.
An efficient method is proposed for the design of finite impulse response (FIR) filter with arbitrary pass band edge, stop band edge frequencies and transition width. The proposed FIR band stop filter is designed using craziness based particle swarm optimization (CRPSO) approach. Given the filter specifications to be realized, the CRPSO algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristics. In this paper, for the given problem, the realizations of the optimal FIR band pass filters of different orders have been performed. The simulation results have been compared with those obtained by the well accepted evolutionary algorithms, such as Parks and McClellan algorithm (PMA), genetic algorithm (GA) and classical particle swarm optimization (PSO). Several numerical design examples justify that the proposed optimal filter design approach using CRPSO outperforms PMA and PSO, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.  相似文献   
2.
3.
This paper proposes an alternative algorithm to solve the median shortest path problem (MSPP) in the planning and design of urban transportation networks. The proposed vector labeling algorithm is based on the labeling of each node in terms of a multiple and conflicting vector of objectives which deletes cyclic, infeasible and extreme-dominated paths in the criteria space imposing cyclic break (CB), path cost constraint (PCC) and access cost parameter (ACP) respectively. The output of the algorithm is a set of Pareto optimal paths (POP) with an objective vector from predetermined origin to destination nodes. Thus, this paper formulates an algorithm to identify a non-inferior solution set of POP based on a non-dominated set of objective vectors that leaves the ultimate decision to decision-makers. A numerical experiment is conducted using an artificial transportation network in order to validate and compare results. Sensitivity analysis has shown that the proposed algorithm is more efficient and advantageous over existing solutions in terms of computing execution time and memory space used.  相似文献   
4.
This work reports a new methodology for deriving monthly averages of temperature (T) and salinity (S) fields for the Indian Ocean based on the use of an artificial neural network (ANN). Investigation and analysis were performed for this region with two distinct datasets: (1) monthly climatological data for T and S fields (in 1° × 1° grid boxes) at standard depth levels of the World Ocean Atlas 1994 (WOA94), and; (2) heterogeneous randomly distributed in situ ARGO, ocean station data (OSD) and profiling (PFL) floats. A further numerical experiment was conducted with these two distinct datasets to train the neural network model. Nonlinear regression mapping utilizing a multilayer perceptron (MLP) is employed to tackle nonlinearity in the data. This study reveals that a feed-forward type of network with a resilient backpropagation algorithm is best suited for deriving T and S fields; this is demonstrated by independently using WOA94 and in situ data, which thus tests the robustness of the ANN model. The suppleness of the T and S fields derived from the ANN model provides the freedom to generate a new grid at any desired level with a high degree of accuracy. Comprehensive training, testing and validation exercises were performed to demonstrate the robustness of the model and the consistency of the derived fields. The study points out that the parameters derived from the ANN model using scattered, inhomogeneous in situ data show very good agreement with state-of-the-art WOA climatological data. Using this approach, improvements in ocean climatology can be expected to occur in a synergistic manner with in situ observations. Our investigation of the Indian Ocean reveals that this approach can be extended to model global oceans.  相似文献   
5.
This paper models traffic congestion formation on highways and roads by recognizing the centrality of dynamical systems and using concepts from complexity theory as imbedded in the spin glasses analogue. Further, it explores the concept of how an increase in air pollution caused by vehicle exhaust emission can be traced to traffic congestion, specifically to the acceleration/deceleration of vehicles on the roads. First, spin glass is introduced and then by applying the two-dimensional xy Ising model and defining a Hamiltonian (based on Edwards-Anderson and Mattis models of spin glass systems) for a system of vehicles on the road, derivations are made of the specific friction of congestion and the bulk modulus of congestion using the Gibbs-Boltzmann statistic. Similarly using the interactions of vehicles with each other and the resulting accelerations and decelerations of vehicles as the basis for exhaust emissions, derivations are made of a specificity of exhaust emissions. These are analogues to the entropy models of thermodynamics. This series of derivations serves as an analytical model for detecting incidents of congestion and increase in air pollution due to exhaust emissions in transportation systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号