首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
水路运输   22篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
An accurate determination of the global load effects in a ship is vital for the design of the vessel. This paper addresses an experimental and numerical study of containership responses in severe head seas. Experimental results were obtained using a flexible model of a containership of newer design. The experiments showed that, taking hull flexibility into account, the fourth and sixth harmonic of the vertical bending moments had a maximum value of between 25% and 50% of the first harmonic. We also demonstrated that hull flexibility can increase the vertical bending moment by up to 35% in sea states relevant for design. Comparisons of moments found experimentally with results from a nonlinear hydroelastic strip theory method showed that the effect of nonlinearities on the rigid body moments was slightly over-predicted in the aft body. The method also tends to over-predict the increase of the bending moments due to hull flexibility. In general however, the numerical results compared reasonably well with the experimental ones.  相似文献   
2.
The coefficient of contribution method, in which the extreme response is determined by considering only the few most important sea states, is an efficient way to do nonlinear long-term load analyses. To furthermore efficiently find the nonlinear short-term probability distributions of the vessel responses in these sea states, response conditioned wave methods can be used. Several researchers have studied the accuracy of response conditioned wave methods for this purpose. However, further investigations are necessary before these can become established tools. In this paper we investigate the accuracy by comparing the short-term probability distributions obtained from random irregular waves with those from response conditioned waves. We furthermore show how response conditioned wave methods can be fitted into a long-term response analysis. The numerical and experimental investigations were performed using a container vessel with a length between perpendiculars of 281 m. Numerical simulations were done with a nonlinear hydroelastic time domain code. Experiments were carried out with a flexible model of the vessel in the towing tank at the Marine Technology Centre in Trondheim. The focus was on the probability distributions of the midship vertical hogging bending moments in the sea states contributing most to the hogging moments with a mean return period of 20 years and 10 000 years. We found that the response conditioned wave methods can very efficiently be used to accurately determine the nonlinear short-term probability distributions for rigid hulls, but either accuracy or efficiency is to a large effect lost for flexible hulls, when slamming induced whipping responses are accounted for.  相似文献   
3.
A method for the prediction of slamming loads on ship hulls is presented and validated for a 20-knot, 120-m car carrier. A nonlinear strip theory is used to calculate the relative motions of ship and wave. The relative vertical and roll velocities for a slamming event are given as input to the slamming calculation program, which is based on a generalized two-dimensional Wagner formulation and solved by the boundary element method. The method is fast and robust. Model tests of a car carrier have been carried out in regular head, bow, and bow quartering waves of various heights. Slamming on two panels in the upper part of the bow flare has been studied. It has been found that the water pile-up around the bow due to the forward speed of the vessel significantly increases the slamming pressures. A simplified way of including this effect is presented. When the calculated slamming pressures are corrected for 3D effects, they compare well with the measured data. Since the effect of the wave elevation due to the forward speed and the effect of three-dimensional flow act in opposite directions, excluding both of them produced results that also agreed quite well with the experiments, especially for the most severe slamming events.  相似文献   
4.
Based on relevant in-service experience, this paper discusses how risks associated with station-keeping systems can be controlled through adequate design criteria, inspection, repair and maintenance practice, as well as quality assurance and control of the engineering processes. Particular focus must be placed on quantitative design for system robustness. The application of structural reliability analysis to quantify safety is briefly reviewed. In particular it was emphasized that reliability predictions based on normal uncertainties and variability yielded lower failure rates than those experienced for predictions of hulls and catenary mooring systems; gross errors in design, fabrication and operation were responsible. For this reason the broad safety management approach mentioned above was proposed. Moreover, it was found that this approach needed to be supported by a quantitative risk assessment. Finally, the challenges in dealing with the effects of human factors in risk management are outlined, along with means to deal with them in a qualitative manner, by the so-called barrier method to limit risk.  相似文献   
5.
The development of robust design tools for offshore wind turbines requires knowledge of both wave and wind load models and response analysis. Verification of the numerical codes is required by the use of experiments and code-to-code comparisons. This paper presents a hydroelastic code-to-code comparison between the HAWC2 and USFOS/vpOne codes for a tension leg spar (TLS) wind turbine with a single tether. This concept is hence based on the TLP and Spar concepts. The comparison is performed using coupled hydroelastic time domain simulations. Several aspects of modelling, such as wave simulation, hydrodynamic and structural modelling, are addressed for the TLS. Wave-induced motions of the support structure affect the power performance of a wind turbine. Furthermore, overload of the tension leg should be avoided. In this paper, the motion and tension responses are compared. The tension leg introduces nonlinear effects on the spar motion. These nonlinear effects include combined-frequency effect such as double, difference and sum of wave, as well as natural pitch and surge frequencies. Hydrodynamic loads are based on a combination of the Morison formula and the pressure integration method. A comparison indicates that the motion and tension responses obtained in the two codes are in good agreement.  相似文献   
6.
An efficient method for calculation of the slamming pressures on ship hulls in irregular waves is presented and validated for a 290-m cruise ship. Nonlinear strip theory was used to calculate the ship–wave relative motions. The relative vertical and roll velocities for a slamming event were input to the slamming calculation program, which used a two-dimensional boundary element method (BEM) based on the generalized 2D Wagner formulation presented by Zhao et al. To improve the calculation efficiency, the method was divided into two separate steps. In the first step, the velocity potentials were calculated for unit relative velocities between the section and the water. In the next step, these precalculated velocity potentials were used together with the real relative velocities experienced in a seaway to calculate the slamming pressure and total slamming force on the section. This saved considerable computer time for slamming calculations in irregular waves, without significant loss of accuracy. The calculated slamming pressures on the bow flare of the cruise ship agreed quite well with the measured values, at least for time windows in which the calculated and experimental ship motions agreed well. A simplified method for calculation of the instantaneous peak pressure on each ship section in irregular waves is also presented. The method was used to identify slamming events to be analyzed with the more refined 2D BEM method, but comparisons with measured values indicate that the method may also be used for a quick quantitative assessment of the maximum slamming pressures.  相似文献   
7.
8.
9.
Longitudinal stresses due to combined horizontal and vertical bending moments in ships, corresponding to a return period of 20 years, are estimated by linear response analysis. In principle, the stress should be obtained by combining the stress in all sea states that can occur over a long-term period. A method to determine the desired long-term extreme stress by considering only a few short-term sea states is presented. The sea states have a certain probability of occurrence, and are each identified by a contour line in the (H s, T p)-plane. This approach makes it possible to estimate the extreme loads on the vessel in a practical and accurate manner. Moreover, it is shown that the long-term stress can be estimated by combining the individual long-term extreme stresses due to vertical and horizontal bending moments by using the sum-of-squares approach and accounting for the correlation between stresses. It was found that the correlation coefficient can be taken as the largest of the ones calculated along the contour line. It is shown that this correlation coefficient can even be approximated by the normalized phase angle at the wave length where the dominant response has its peak value. A comparison with the results obtained using well-known combination rules is presented. While linear analysis has been used here, it is believed that the approach can be generalized to stresses with nonlinear behavior, and hence represent a significant improvement in calculation efficiency. Received: September 18, 2001 / Accepted: December 18, 2001  相似文献   
10.
This paper deals with a estimation of long-term extreme value for a given return period, say D=100 yr. In principle, this response is obtained by combining the response in all the sea states. The long-term response for a linear system can be effectively obtained by determining the response for each sea state, specified by the significant wave height, Hs, and the peak period, Tp, in the frequency domain. However, if the response is nonlinear, time domain simulation and a long time series would be required, to limit statistical uncertainty. Therefore, the long-term analysis becomes rather complicated and time consuming. For the long-term analysis, it is crucial to introduce ways to improve the efficiency in the calculation. In this work, it is shown that, the long-term extremes can be estimated by considering only a few short-term sea states. A long-term analysis based on identifying the most important sea state, defined by the coefficient of contribution, using linear analysis is applied. An iteration procedure is thereafter used to find the nonlinear long-term extreme values. It is concluded that only a limited number of sea states is necessary to get an acceptable estimate of the nonlinear D-year response as long as the most important sea states are included, i.e., the sea state with the maximum coefficient of contribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号