首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   1篇
铁路运输   1篇
  2023年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
为探究在高速列车车顶安装升力翼后引起的列车周围流场剧变,以三车编组1∶10缩尺比某型CRH高速列车模型为研究对象,采用基于两方程湍流模型的改进型延迟分离涡模拟(IDDES)方法,对比分析了有无升力翼的2种高速列车时均和瞬时列车风的发展规律;利用涡旋识别方法探讨了尾迹区瞬时涡结构分布特征,通过比较尾迹区不同流向位置的列车风分布特征与尾流涡旋移动规律,验证了列车风速度峰值与尾涡非定常特性的相关性,采用频谱分析方法获得了尾迹区速度功率谱密度曲线。研究结果表明:升力翼的几何外形结构加剧了车身表面边界层分离,令列车顶部和侧表面边界层厚度增大;升力翼使列车风速度峰值增大,其中在轨侧和站台位置最大时均列车风速度分别增大了1.556和1.327倍,且相较原型列车第2个峰值位置延后;由于翼尖涡不断向下游发展和累积,升力翼列车尾流结构表现为大尺度涡对中夹杂着一对更为破碎的细小涡旋,相较原型列车,涡旋与地面之间的剪切作用更强,升力翼列车尾流时均列车风速度在展向分布上有所增大,但垂直分布上有所降低,并在水平面上出现更明显的剪切分离;升力翼列车尾迹中包含较多破碎的小尺度涡,进而影响了尾迹涡脱落频率,使之比原型列...  相似文献   
2.
针对高速地铁列车通过隧道区间风井扩大段时引起的乘客耳感不适,依托某带隧道风井的地铁线路区间及设计时速120 km的8车编组地铁列车,以ATO运行模式开展实车试验;在确保试验可重复性的基础上,探究列车站间运行时各车厢内外压力变化规律,分析区间风井扩大段引起车内外压力突变的原因。结果表明:车头和车尾先后高速通过风井段时,相当于经历了隧道断面面积先扩大再缩小的变化过程,会形成类似于车头和车尾驶出和进入隧道洞口的物理现象,车头、车尾通过区间风井扩大段会导致车外压力的上升、下降,此时产生的压力突变是导致耳感不适的主要原因;尾车至头车的车外压力正峰值和负峰值全程呈上升趋势,头车和尾车压力变化峰峰值接近,分别为1 617和1 723 Pa,5车压力变化峰峰值最小,为964 Pa;列车通过区间风井扩大段时,车内压力变化幅值受运行速度的影响较大,速度为113 km·h-1时,任意3和1 s内的车内压力变化幅值均超过相应标准中的耳感舒适性要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号