首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
水路运输   2篇
  2008年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Commercial shipping of containerized goods involves certain risks for human safety and environment. In order to actively manage these risks, they must be identified, analyzed, modeled, and quantified. This requires a systematical analysis of design and operation of container vessels. Within the EU-funded research project SAFEDOR, a Formal Safety Assessment has been applied to establish the current safety level of generic container ships and to identify potential cost-effective risk control options. This paper describes a structured approach to develop the underlying high-level risk model. It is structured as risk contribution tree consisting of a series of fault trees and event trees for the major accident categories. Statistical analysis of casualty data is used to estimate the probability of occurrence. Finally, the summation overall individual risk contributions yields the current risk pro file for the operation of container vessels is presented as FN-curve.  相似文献   
2.
An understanding of microbial interactions in first-year sea ice on Arctic shelves is essential for identifying potential responses of the Arctic Ocean carbon cycle to changing sea-ice conditions. This study assessed dissolved and particulate organic carbon (DOC, POC), exopolymeric substances (EPS), chlorophyll a, bacteria and protists, in a seasonal (24 February to 20 June 2004) investigation of first-year sea ice and associated surface waters on the Mackenzie Shelf. The dynamics of and relationships between different sea-ice carbon pools were investigated for the periods prior to, during and following the sea-ice-algal bloom, under high and low snow cover. A predominantly heterotrophic sea-ice community was observed prior to the ice-algal bloom under high snow cover only. However, the heterotrophic community persisted throughout the study with bacteria accounting for, on average, 44% of the non-diatom particulate carbon biomass overall the study period. There was an extensive accumulation of sea-ice organic carbon following the onset of the ice-algal bloom, with diatoms driving seasonal and spatial trends in particulate sea-ice biomass. DOC and EPS were also significant sea-ice carbon contributors such that sea-ice DOC concentrations were higher than, or equivalent to, sea-ice-algal carbon concentrations prior to and following the algal bloom, respectively. Sea-ice-algal carbon, DOC and EPS-carbon concentrations were significantly interrelated under high and low snow cover during the algal bloom (r values ≥ 0.74, p < 0.01). These relationships suggest that algae are primarily responsible for the large pools of DOC and EPS-carbon and that similar stressors and/or processes could be involved in regulating their release. This study demonstrates that DOC can play a major role in organic carbon cycling on Arctic shelves.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号