首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
公路运输   7篇
水路运输   1篇
综合运输   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2006年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Many car-following models predict a stable car-following behavior with a very small fluctuation around an equilibrium value g1 of the net headway g with zero speed-difference Δv between the following and the lead vehicle. However, it is well-known and additionally demonstrated by data in this paper, that the fluctuations are much larger than these models predict. Typically, the fluctuation in speed difference is around ±2 m/s, while the fluctuation in the net time headway T = g/v can be as big as one or even two seconds, which is as large as the mean time headway itself. By analyzing data from loop detectors as well as data from vehicle trajectories, evidence is provided that this randomness is not due to driver heterogeneity, but can be attributed to an internal stochasticity of the driver itself. A final model-based analysis supports the hypothesis, that the preferred headway of the driver is the parameter that is not kept constant but fluctuates strongly, thus causing the even macroscopically observable randomness in traffic flow.  相似文献   
2.
The lateral vehicle dynamics is defined by the effects of side forces at the front and rear axle. These forces are caused by the slip and camber angle at the individual tyres, which are results of the kinematics and compliances of the chassis. This paper extends the approach of the effective axle characteristics by Paceyka to the analytical expression of the axle cornering stiffness and the axle relaxation behaviour with the aim of the development of a chassis design process as it applies in the early design stage. The obtained expression is integrated into a single track model and validated against a full nonlinear two-track model. By this means of these analytical expressions for the axle cornering stiffness and the axle relaxation behaviour it is possible to directly calculate and analyse the effective slip angles for linear quasi-static and dynamic driving manoeuvres.  相似文献   
3.
Harald Wagner 《隧道建设》2012,32(2):139-141
合同对地下工程非常重要。主要阐述地下工程的合同编制阶段、合同含义和项目组织。首先介绍合同模式及合同的主要构成,然后详细阐述合同编制中需要重点关注的几个方面,如不良地质应对、风险控制、施工前采取的措施、风险规避措施、工程勘探质量和施工前、施工中采取的勘探措施等。  相似文献   
4.
5.
The increasing popularity of sport utility/light-duty vehicles has prompted the investigation of active roll management systems to reduce vehicle body roll. To minimize vehicle body roll and improve passenger comfort, one emerging solution is an active torsion bar control system. The validation of automotive safety systems requires analytical evaluation and laboratory testing prior to implementation on an actual vehicle. In this article, a computer simulation tool and accompanying hardware-in-the-loop test environment are presented for active torsion bar systems to study component configurations and performance limits. The numerical simulation illustrates that the hydraulic cylinder extension limits the active torsion system's ability to provide body roll angle reduction under various driving conditions. To compare the control system's time constant and body roll minimization capabilities for different hydraulic valve assemblies and equivalent hose lengths, an experimental test stand was created. For a typical hydraulic pressure and hose diameter, the equivalent hose length was not a key design variable that impacted the system response time. However, the servo-valve offered a quicker transient response and smoother steady-state behavior than the solenoid poppet actuators that may increase occupant safety and comfort.  相似文献   
6.
The automotive steering system is the primary channel through which road and vehicle behavior feedback is transmitted to the driver. While the driver provides directional platform control through the steering wheel, perceptions of the vehicle’s handling responsiveness are simultaneously transmitted back to the driver allowing for correction of any instabilities the vehicle may encounter. Based on these factors, drivers often pay special attention to the steering system when deciding what vehicle to purchase. Therefore, a significant amount of effort and time is invested in attempting to determine the optimal design of steering system components and configurations. In this study, the determination of an optimal steering configuration was attempted based on responses obtained from questionnaires that subjects answered. The questions were designed to evaluate the degree of satisfaction regarding the “control”, “ease of operation”, and “fun” participants experienced after each driving run. During the study, human subjects drove a driving simulator for 15 combinations of 3 different roadway environments and 5 different steering configurations, filling out a questionnaire after each scenario. The subjects were also classified as a type of driver (“utility”, “enthusiast”, and/or “performance”). The study attempted to determine if the mean values of questionnaire responses for “control”, “ease”, and “fun” type of questions changed as the scenario and/or driver type changed. Analysis of Variance (ANOVA) was used to determine if the mean values of the three types of questions were statistically different. The overall results suggest that the average responses for vehicle “control”, “ease”, and the “fun” type of questions were dependent on the type of roadway environment; however, only the responses for “fun” type of questions were influenced by the given steering configurations. Indeed, the steering system can impact the driver’s perceptions of the vehicle’s operational experience.  相似文献   
7.
The steerability and stability of vehicles must be maintained during emergency stopping and evasive driving maneuvers on degraded road surfaces. The introduction of antilock brake and traction control systems (ABS/TCS) has expanded the envelope of safe vehicle operation for the majority of drivers. These mechatronic systems combine an electronic controller with wheel speed sensors, an electro-mechanical hydraulic brake actuator, and in some instances, engine intervention through the engine control unit, to regulate wheel slip. The development of ABS systems has traditionally depended on extensive in-vehicle testing, at cold weather proving grounds, which contribute to lengthy product development cycles. However, recent attention has been focused on the use of simulation and hardware-in-the-loop strategies to emulate test conditions in a controlled setting to shorten product design time and methodically address critical safety issues. In this paper, the effect of transient load shifting due to cargo movement on ABS performance in light-duty vehicles will be investigated. Analytical and empirical mathematical models are presented to describe the chassis, tire/road interface, wheel, brake modulator, and cargo dynamics. Two strategies, a model-free table lookup and model-based discrete nonlinear controller, are presented to regulate the ABS modulator's operation. These vehicle and controller dynamics have been integrated into a simulation tool to investigate the effect of transient weight transfers on the vehicle's overall stopping distance and time. Representative numerical results are presented and discussed to quantify the ABS systems' performance for various loading and operating conditions.  相似文献   
8.
This paper presents a new application of active rear-wheel steering control to improve the lateral vehicle behaviour. In the state of the art, yaw or lateral velocity is used as control variable that means one degree of freedom being not directly controlled. A worse subjective impressions due to movements in the rear end of the vehicle during strong counter-steering are a consequence. To avoid this effect in urban surroundings, an innovative structure to control the pivot point distance of the vehicle is proposed. In this case the coupled elementary states yaw and lateral velocity can be influenced based on a higher level criteria. Analysis show that pivot point fixing provides a comprehensible reference behaviour. Solving the issue of singularity during disappearing yaw movement is the basis to design a performant modified feedforward input–output linearisation. An analytic stability analysis of the internal dynamics shows system immanent limitations which do not influence the target of improving the lateral vehicle dynamics in urban manoeuvres. Finally, the advantages of pivot-based control are highlighted by a comparison with state of the art rear axle control.  相似文献   
9.
The beneficial uses of dredge material from the Houston-Galveston Navigation Channel (HGNC) to create large-scale wetlands represents a blueprint for other large U.S. ports. The port authority's interagency coordination team, the Beneficial Uses Group (BUG), successfully developed an innovative 50-year plan to deal with dredge material disposal from the channel widening and maintenance project. The creation of intertidal wetlands will initiate the restoration of the United States' second most productive estuary, in concert with the Galveston Bay National Estuary Plan, while capturing increasingly scarce government financing for port maintenance and improvement operations. An overview of the various beneficial uses of dredge material in the HGNC enlarging project is presented with a detailed investigation of the Bayport Demonstration Marsh. The HGNC project is analyzed as a prototype for successful extensive wetland creation ventures, and several key design criteria for similar large-scale marsh creation projects are given.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号