首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合运输   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

In the transportation literature, two major and parallel approaches exist to identify the critical elements of a transportation system. On the one hand, conventional transportation engineering emphasizes travel demand, often in terms of traffic volume (i.e., demand side). On the other hand, newer techniques from Network Science emphasize network topology (i.e., supply side). To better understand the relationship between the two approaches, we first investigate whether they correlate by comparing traffic volume and node centrality. Second, we assess the impact of the two approaches on the connectivity and resilience of a transportation network; connectivity is measured by the relative size of the giant component, and resilience is measured by the network’s adaptive capacity (the amount of extra flow it can handle). The urban road system of Isfahan (Iran) is used as a practical case study. Overall, we find that traffic volume indeed correlates with node centrality. In addition, we find that the weighted degree of a node, i.e., the sum of the capacities of its incident links (for small disruptions) and node betweenness (for large disruptions), best captures node criticality. Nodes with high weighted degree and betweenness should therefore be given higher priority to enhance connectivity and resilience in urban street systems. Regarding link criticality, roads with higher capacities showed a more important role as opposed to betweenness, flow, and congestion.

  相似文献   
2.
Transportation - In the original publication of the article, the first, second and fourth authors’ affiliations are published incorrectly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号