首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
公路运输   3篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Optimal design of an active suspension system for road vehicles can be solved using LQR techniques. Such a problem is equivalent, in the frequency domain, to determine the state feedback gain matrix that minimizes the H2 norm of a suitable transfer matrix.

A passive suspension system can be seen as the physical realization of a suitable state feedback law whose gains are function of the system parameters. This law, and thus the characteristic elements of the passive suspension, can be determined as an approximation of the H2 optimal solution. This methodology allows one to choose the best controller from a constrained subset (i.e., all possible passive suspensions of a particular form) of all possible controllers.  相似文献   
2.
Design of a Predictive Semiactive Suspension System   总被引:1,自引:0,他引:1  
In this paper we present an original design procedure for semiactive suspension systems. Firstly, we consider a target active control law that takes the form of a feedback control law. Secondly, we approximate the target law by controlling the damper coefficient f of the semiactive suspension. In particular, we examine two different kinds of shock absorbers: the first one uses magneto-rheological fluid instead of oil, while the second one is a solenoid valve damper. In both cases the nonlinear characteristics force-velocity of the damper are used to approximate the target law. To improve the efficiency of the proposed system, we take into account the updating frequency of the coefficient f and compute the expected value of f using a predictive procedure. We also address the problem of designing an asymptotic state observer that can be used not only to estimate the current state but also to predict the value that the state will take at the next sampling time.  相似文献   
3.
The paper presents a two-phase design technique for semiactive suspensions. In the first phase, we use a procedure proposed by Yoshida et al. to compute a target active control law that can be implemented by Optimal Gain Switching. This control law is such that the force generated by the suspension system is bounded within a set U . In the second phase, we approximate this target by controlling the damper coefficient of the semiactive suspension. We also compute the region of the state space in which the force generated by the semiactive suspension is still within the set U . The results of several simulations show that the use of a semiactive suspension leads to minimal loss with respect to optimal performance of an active suspension.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号