首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
公路运输   2篇
  2016年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 9 毫秒
1
1.
ABSTRACT

It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange–Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.  相似文献   
2.
Summary In this paper, a simplified model of tangential contact between tyre and rigid surface is investigated. By linearization the eigensystem of the contact equations is obtained and parameter variations are carried out. It is shown, that some vehicle model parameters have great influence on the eigensystem of tangential contact and can determine the highest eigenfrequency of the system vehicle and tyre. Root loci are used to investigate the influence of parameters like vehicle velocity and gridwidth of the discretization. Based on the eigensystem, stability areas of numerical methods in solving the partial differential equations of tangential contact are calculated. Numerical solutions using stiff and nonstiff integrators are compared with respect to the stability areas, computational effort and accuracy. The results are discussed with a view to further development.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号