首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
公路运输   1篇
综合类   1篇
水路运输   25篇
综合运输   8篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1994年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
2.
Arid areas are characterized by dispersed patterns of population and economic activities in a hot and dry environment. Although basic human needs are identical everywhere, patterns of travel behaviour in arid lands are different from the patterns in more humid areas. The different behavioural patterns imply somewhat different demand patterns for transport services in general and transit services in particular. Good access to the scattered small communities and more so to the remote urban centres is of prime concern in the sparsely populated arid areas. And the demand patterns themselves raise the need to develop unusual types of service based on local conditions. This article presents the effects of the arid spatial and climatic conditions on transit demand and supply. After examining the service standards required in the sparselands and using the Israeli Negev region as an example, guidelines for developing regional transit systems in these arid areas are put forward.  相似文献   
3.
4.
我认为,造船师和轮机师考虑海上环境设计的船舶,它们99.9%的时间在海上渡过。但他们忘了,这些船舶还必须进入河道装卸货物。当某件引起公众高度关注的事故发生,船舶建造者或许会进入公众视线,发现他们犯有疏忽罪,要为建造了动力不足和操纵不良的船舶负责。一位引航员的观点国际  相似文献   
5.
Part 2 of this two-part paper presents the analysis and validation results of local flow characteristics for a surface combatant Model 5415 bare hull under static and dynamic planar motion mechanism simulations. Unsteady Reynolds averaged Navier–Stokes (URANS) computations are carried out by a general-purpose URANS/detached eddy simulation research code CFDShip-Iowa Ver. 4. The objective of this research is to investigate the capability of the code in relation to the computational fluid dynamics-based maneuvering prediction method. In the current study, the ship is subjected to static drift, steady turn, pure sway and pure yaw motions at Froude number 0.28. The free surface, three dimensional vortical structure and, the validation of two dimensional local flow quantities together with the available experimental data are of the interest in the current study. Part 1 provides the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives.  相似文献   
6.
Vortical structures and associated instabilities for flows around the Wigley hull for a wide range of drift angles (10° ≤ α ≤ 60°) with free surface are identified and analyzed. Quantitative verification and validation are conducted on three systematically refined grids with comparison to the experimental data for α = 10°. Analysis of the flow pattern shows a strong correlation between the vortical structures and free-surface wave elevation. For α = 10° and 30°, the flows remain steady and vortices are generated at the keel and fore and aft perpendiculars of the hull. The strength and complexity of these vortices increase with increasing α. At α = 45°, flow becomes unsteady without any significant change in the main flow pattern. At α = 60°, a complex and unsteady flow field on the leeward side of the hull is formed with a large recirculation region from the aft to the fore end, which prevents the flow coming from below the keel from moving up and generating the keel vortices observed at lower drift angles. Karman-like and helical instabilities are analyzed. The effect of Froude number is more apparent for large than for small drift angles.  相似文献   
7.
EFD and CFD for KCS heaving and pitching in regular head waves   总被引:3,自引:0,他引:3  
The KCS container ship was investigated in calm water and regular head seas by means of EFD and CFD. The experimental study was conducted in FORCE Technology’s towing tank in Denmark, and the CFD study was conducted using the URANS codes CFDSHIP-IOWA and Star-CCM+ plus the potential theory code AEGIR. Three speeds were covered and the wave conditions were chosen in order to study the ship’s response in waves under resonance and maximum exciting conditions. In the experiment, the heave and pitch motions and the resistance were measured together with wave elevation of the incoming wave. The model test was designed and conducted in order to enable UA assessment of the measured data. The results show that the ship responds strongly when the resonance and maximum exciting conditions are met. With respect to experimental uncertainty, the level for calm water is comparable to PMM uncertainties for maneuvering testing while the level is higher in waves. Concerning the CFD results, the computation shows a very complex and time-varying flow pattern. For the integral quantities, a comparison between EFD and CFD shows that the computed motions and resistance in calm water is in fair agreement with the measurement. In waves, the motions are still in fair agreement with measured data, but larger differences are observed for the resistance. The mean resistance is reasonable, but the first order amplitude of the resistance time history is underpredicted by CFD. Finally, it seems that the URANS codes are in closer agreement with the measurements compared to the potential theory.  相似文献   
8.
The main objective of this article is to describe the development of two advanced multiobjective optimization methods based on derivative-free techniques and complex computational fluid dynamics (CFD) analysis. Alternatives for the geometry and mesh manipulation techniques are also described. Emphasis is on advanced strategies for the use of computer resource-intensive CFD solvers in the optimization process: indeed, two up-to-date free surface-fitting Reynolds-averaged Navier-Stokes equation solvers are used as analysis tools for the evaluation of the objective function and functional constraints. The two optimization methods are realized and demonstrated on a real design problem: the optimization of the entire hull form of a surface combatant, the David Taylor Model Basin—Model 5415. Realistic functional and geometrical constraints for preventing unfeasible results and to get a final meaningful design are enforced and discussed. Finally, a recently proposed verification and validation methodology is applied to assess uncertainties and errors in simulation-based optimization, based on the differences between the numerically predicted improvement of the objective function and the actual improvement measured in a dedicated experimental campaign. The optimized model demonstrates improved characteristics beyond the numerical and experimental uncertainty, confirming the validity of the simulation-based design frameworks.  相似文献   
9.
Exclusive bus lanes provide a very high level of priority for transit operations, especially for Bus Rapid Transit and Express service, but these lanes could be underutilized and be a source of extra capacity if they could be shared in an intelligent way. This article explores the benefits of providing intermittent priority, called bus lane with intermittent and dynamic priority, of these exclusive bus lanes. Intermittent and dynamic priority can be implemented by allowing vehicles to use the lane when Bus Rapid Transit or Express bus is not present. Drivers can be alerted when a bus is in the lane using either infrastructure-based signs, or in the future using infrastructure-to-vehicle, or connected vehicle communications. Some critical operating parameters for implementing bus lane with intermittent and dynamic priority system including clear distance, degree of saturation (volume-to-capacity ratio), connected vehicle penetration, and bus departure/headway frequency have been investigated in this paper.  相似文献   
10.
The accurate prediction of waterjet propulsion using computational fluid dynamics (CFD) is of interest for performance analyses of existing waterjet designs as well as for improvement and design optimization of new waterjet propulsion systems for high-speed marine vehicles. The present work is performed for three main purposes: (1) to investigate the capability of a URANS flow solver, CFDSHIP-IOWA, for the accurate simulation of waterjet propelled ships, including waterjet–hull interactions; (2) to carry out detailed verification and validation (V&V) analysis; and (3) to identify optimization opportunities for intake duct shape design. A concentrated effort is applied to V&V work and performance analysis of waterjet propelled simulations which form the focus of this paper. The joint high speed sealift design (JHSS), which is a design concept for very large high-speed ships operating at transit speeds of at least 36 knots using four axial flow waterjets, is selected as the initial geometry for the current work and subsequent optimization study. For self-propelled simulations, the ship accelerates until the resistance equals the prescribed thrust and added tow force, and converges to the self propulsion point (SPP). Quantitative V&V studies are performed on both barehull and waterjet appended designs, with corresponding experimental fluid dynamics (EFD) data from 1/34 scale model testing. Uncertainty assessments are performed on iterative convergence and grid size. As a result, the total resistance coefficient for the barehull case and SPP for the waterjet propelled case are validated at the average uncertainty intervals of 7.0 and 1.1%D, respectively. Predictions of CFD computations capture the general trend of resistance over the speed range of 18–42 knots, and show reasonable agreement with EFD with average errors of 1.8 and 8.0%D for the barehull and waterjet cases, respectively. Furthermore, results show that URANS is able to accurately predict the major propulsion related features such as volume flow rate, inlet wake fraction, and net jet thrust with an accuracy of ~9%D. The flow feature details inside the duct and interference of the exit jets are qualitatively well-predicted as well. It is found that there are significant losses in inlet efficiency over the speed range; hence, one objective for subsequent optimization studies could be maximizing the inlet efficiency. Overall, the V&V work indicates that the present approach is an efficient tool for predicting the performance of waterjet propelled JHSS ships and paves the way for future optimization work. The main objective of the optimization will be reduction of powering requirements by increasing the inlet efficiency through modification of intake duct shape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号