首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
公路运输   4篇
水路运输   2篇
综合运输   4篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2013年   2篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Numerical simulations of IC engines are of high interest for automotive engineers worldwide. The simulation models should be as fast as possible, low-computational effort and predictive tool. The correct prediction of turbulence level inside the combustion chamber of spark ignition engines is the most important factor influencing to the engine working cycle. This paper presents a development of the k-ε turbulence model applied to the commercial cycle-simulation software with the high emphasis on the intake part. The validation was performed on two engine geometries with the variation of engine speed and load comparing the cycle-simulation results of the turbulent kinetic energy and in-cylinder temperature with 3-D CFD results. In order to apply the cycle-simulation turbulence model for the simulation of entire engine map, the parameterization model of turbulence constants was proposed. The parameterized turbulence model was optimized using NLPQL optimization algorithm where the single set of turbulence model parameters for each engine was found. A good agreement of the turbulent kinetic energy during the expansion was achieved when the turbulence affects the flame front propagation and combustion rate as well.  相似文献   
2.
Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.  相似文献   
3.
Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.  相似文献   
4.
Check lists represent a very important tool within the International Safety Management Code, aimed at the regular and thorough assessment of the safety on board ships along with the operation of their parent companies. There seems to be only a few academic articles studying the communicative and rhetorical aspects of these maritime forms explaining why they are written in the way they are, especially in the light of their users who constitute a specific discourse community. The structure of a sample of representative lists is presented, as these check lists do not differ from the forms used by other European shipping companies. After interviews with the seafarers (deck and engine officers) to whom the check lists were administered, the conclusion was reached that they prefer short and unambiguous forms. In addition, a correlation about the language competence of the crew members on board ship was found: the simpler the discourse of the check list, the lower the responsibility of the crew member on board. Further, investigation into these complex language patterns focuses on the practical benefits.  相似文献   
5.
Solar road vehicles have very specific design requirements. This makes their aerodynamic characteristics quite different from classic sedan vehicles. In the present study, the computational model of a typical solar road vehicle was developed to investigate its aerodynamic forces and flow characteristics. Computations were performed assuming the steady viscous flow and using the Reynolds-averaged Navier Stokes equations along with the k-ω turbulence model. The obtained results indicate some important findings that are commonly not present for classic sedan vehicles. In particular, a contribution of the viscous drag force to the overall drag force is considerably larger (41 %) than it is the case for the standard passenger road vehicles, where the form drag force dominates over the viscous drag force. Surface pressure distribution patterns indicate a favorable aerodynamic design of this vehicle. In particular, larger pressure coefficients on the top of the vehicle body as compared to the bottom surface contribute to increasing a downforce and thus the vehicle traction. The airfoil-shaped crosssection of the designed cockpit canopy has favorable properties with respect to reduction of the aerodynamic drag force.  相似文献   
6.
Abstract

Planners, engineers and economists have introduced various demand management methods in an attempt to reduce the fast growing traffic congestion. The basic idea behind various demand management strategies is to force drivers to travel and use transportation facilities more during off-peak hours and less during peak hours, as well as to increase the usage of underutilized routes. In this paper, a new demand management concept – Auction-based Congestion Pricing – is proposed and modeled.  相似文献   
7.
Determining the number and location of depots for winter road maintenance (WRM) represents one of the important strategic decisions while planning WRM activities. However, most organizations dealing with WRM make empirically based decisions. Optimizing the number and location of WRM depots has the potential to achieve considerable cost savings, improve mobility and efficiency, as well as reduce environmental impacts. This paper presents two optimization models. The first model determines the location of WRM depots by minimizing the total distance travelled by maintenance vehicles. The second model determines the optimum number and location of WRM depots by minimizing total transportation costs and capital expenditure and operational expenditure of the depots. The models are then applied to the district road network in Serbia. Results show that their application could lead to significant reductions in WRM costs.  相似文献   
8.
Abstract

When disturbances make it impossible to realise the planned flight schedule, the dispatcher at the airline operational centre defines a new flight schedule based on airline policy, in order to reduce the negative effects of these perturbations. Depending on airline policy, when designing the new flight schedule, the dispatcher delays or cancels some flights and reassigns some flights to available aircraft. In this paper, a decision support system (DSS) for solving the airline schedule disturbances problem is developed aiming to assist decision makers in handling disturbances in real-time. The system is based on a heuristic algorithm, which generates a list of different feasible schedules ordered according to the value of an objective function. The dispatcher can thus select and implement one of them. In this paper, the possibilities of DSS are illustrated by real numerical examples that concern JAT Airways' flight schedule disturbances.  相似文献   
9.
As navigation algorithms using Kalman filters, fuzzy or adaptive algorithms, interacting multiple model (IMM) algorithms and other possible solutions combining data from several sensors, have been progressively used in the last decade, there has been little advance in developing a robust and accurate device available for car manufacturers. The most solutions fail in long-term reliability and/or use too generalized linearization models. This is why in this paper we have examined some high dynamic manoeuvres which are usually a part of automotive tests. Some major issues during these manoeuvres were identified and a modified Kalman filter solution is presented. The problem of positioning of an inertial device within a vehicle is addressed and a transformation of measured data to the centre of gravity (COG) or rotation point (RP) of the vehicle is introduced. We also propose a few methods to identify the start and the stop of a brake test and show distance difference between conventional and modified Kalman algorithm during driving in circles. Finally, a direct and indirect lever-arm correction is introduced and real road tests are made to present an improvement in outputs using one-device sensor setup.  相似文献   
10.
The paper introduces an optimal control method for traffic management with variable speed limits. It consists of traffic flow dynamics prediction with a non‐linearized Lighthill–Whitham–Richards macroscopic traffic flow model, introduction of a cost functional, which enables stable shockwaves optimization, and numerical implementation of the optimization process with differential evolution. The method overcomes the discretization issues and provides speed limits that are in general not limited to small number of successive discrete points, i.e. variable message signs locations, nor in rounded speed limits. Performance of the method is demonstrated on a case study, which shows promising reduction of the backward moving shockwave that occurs because of a stationary bottleneck. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号