首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
公路运输   8篇
综合类   4篇
综合运输   36篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   3篇
  2015年   10篇
  2014年   6篇
  2013年   3篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2005年   2篇
  2004年   3篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
跟驰过程中驾驶员认知结构模型的建立   总被引:1,自引:2,他引:1  
在道路交通4要素中(人、车、路、环境),人以其主动性和智慧性起着支配作用,是其中的主体要素。基于认知心理学的有关知识,论文采用因子分析法对五轮仪实验系统观测到的车辆跟驰数据进行分析,确定了对车辆跟驰信息提取过程有独立作用的4个因素,相应地将驾驶员认知过程划分为4个阶段,建立了车辆跟驰过程的驾驶员认知结构模型。为驾驶行为研究和车辆跟驰模型的建立提供了理论基础。  相似文献   
2.
Traffic instability is an important but undesirable feature of traffic flow. This paper reports our experimental and empirical studies on traffic flow instability. We have carried out a large scale experiment to study the car-following behavior in a 51-car-platoon. The experiment has reproduced the phenomena and confirmed the findings in our previous 25-car-platoon experiment, i.e., standard deviation of vehicle speeds increases in a concave way along the platoon. Based on our experimental results, we argue that traffic speed rather than vehicle spacing (or density) might be a better indicator of traffic instability, because vehicles can have different spacing under the same speed. For these drivers, there exists a critical speed between 30 km/h and 40 km/h, above which the standard deviation of car velocity is almost saturated (flat) along the 51-car-platoon, indicating that the traffic flow is likely to be stable. In contrast, below this critical speed, traffic flow is unstable and can lead to the formation of traffic jams. Traffic data from the Nanjing Airport Highway support the experimental observation of existence of a critical speed. Based on these findings, we propose an alternative mechanism of traffic instability: the competition between stochastic factors and the so-called speed adaptation effect, which can better explain the concave growth of speed standard deviation in traffic flow.  相似文献   
3.
To investigate the car-following behavior under high speed driving conditions, we performed a set of 11-car-platoon experiments on Hefei airport highway. The formation and growth of oscillations have been analyzed and compared with that in low speed situations. It was found that there is considerable heterogeneity for the same driver over different runs of the experiment. This intra-driver heterogeneity was quantitatively depicted by a new index and incorporated in an enhanced two-dimensional intelligent driver model. Using both the new high-speed and the previous low-speed experimental data, the new and three existing models were calibrated. Simulation results show that the enhanced model outperforms the three existing car-following models that do not take into account this intra-driver heterogeneity in reproducing the essential features of the traffic in the experiments.  相似文献   
4.
To connect microscopic driving behaviors with the macro-correspondence (i.e., the fundamental diagram), this study proposes a flexible traffic stream model, which is derived from a novel car-following model under steady-state conditions. Its four driving behavior-related parameters, i.e., reaction time, calmness parameter, speed- and spacing-related sensitivities, have an apparent effect in shaping the fundamental diagram. Its boundary conditions and homogenous case are also analyzed in detail and compared with other two models (i.e., Longitudinal Control Model and Intelligent Driver Model). Especially, these model formulations and properties under Lagrangian coordinates provide a new perspective to revisit the traffic flow and complement with those under Eulerian coordinate. One calibration methodology that incorporates the monkey algorithm with dynamic adaptation is employed to calibrate this model, based on real-field data from a wide range of locations. Results show that this model exhibits the well flexibility to fit these traffic data and performs better than other nine models. Finally, a concrete example of transportation application is designed, in which the impact of three critical parameters on vehicle trajectories and shock waves with three representations (i.e., respectively defined in x-t, n-t and x-n coordinates) is tested, and macro- and micro-solutions on shock waves well agree with each other. In summary, this traffic stream model with the advantages of flexibility and efficiency has the good potential in level of service analysis and transportation planning.  相似文献   
5.
The main goal of in-vehicle technologies and co-operative services is to reduce congestion and increase traffic safety. This is achieved by alerting drivers on risky traffic conditions ahead of them and by exchanging traffic and safety related information for the particular road segment with nearby vehicles. Road capacity, level of service, safety, and air pollution are impacted to a large extent by car-following behavior of drivers. Car-following behavior is an essential component of micro-simulation models. This paper investigates the impact of an infrastructure-to-vehicle (I2V) co-operative system on drivers’ car-following behavior. Test drivers in this experiment drove an instrumented vehicle with and without the system. Collected trajectory data of the subject vehicle and the vehicle in front, as well as socio-demographic characteristics of the test drivers were used to estimate car-following models capturing their driving behavior with and without the I2V system. The results show that the co-operative system harmonized the behavior of drivers and reduced the range of acceleration and deceleration differences among them. The observed impact of the system was largest on the older group of drivers.  相似文献   
6.
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams.It is necessary to consider human-factors in CF modeling for a more realistic representation of CF behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of CF models available in the literature, none of these specifically focuses on the human factors in these models.This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.  相似文献   
7.
This contribution furthers the control framework for driver assistance systems in Part I to cooperative systems, where equipped vehicles can exchange relevant information via vehicle-to-vehicle communication to improve the awareness of the ambient situation (cooperative sensing) and to manoeuvre together under a common goal (cooperative control). To operationalize the cooperative sensing strategy, the framework is applied to the development of a multi-anticipative controller, where an equipped vehicle uses information from its direct predecessor to predict the behaviour of its pre-predecessor. To operationalize the cooperative control strategy, we design cooperative controllers for sequential equipped vehicles in a platoon, where they collaborate to optimise a joint objective. The cooperative control strategy is not restricted to cooperation between equipped vehicles. When followed by a human-driven vehicle, equipped vehicles can still exhibit cooperative behaviour by predicting the behaviour of the human-driven follower, even if the prediction is not perfect.The performance of the proposed controllers are assessed by simulating a platoon of 11 vehicles with reference to the non-cooperative controller proposed in Part I. Evaluations show that the multi-anticipative controller generates smoother behaviour in accelerating phase. By a careful choice of the running cost specification, cooperative controllers lead to smoother decelerating behaviour and more responsive and agile accelerating behaviour compared to the non-cooperative controller. The dynamic characteristics of the proposed controllers provide new insights into the potential impact of cooperative systems on traffic flow operations, particularly at the congestion head and tail.  相似文献   
8.
Traffic simulation models often neglect the important role of motorcycles and assume a flow of various combinations of cars. This paper addresses how much different would be the behavior of a car driver while following a motorcyclist compared to cases in which a car follows another car, along with a segment of an urban highway in the non-congested flow. Recognition of such a difference might help to develop existing simulation models and to improve the behavior of car drivers in such a way to lead to lower accidents with motorcycles. To reach the goal, a GHR (Gazis-Herman-Rothery) model for car following is applied and data have been collected by video cameras during 15?min time intervals in three different days. Analysis of 198 car-motorcycle and 374 car-car following observations has indicated that when a car driver follows a motorcycle, keeps a higher headway (about 10?m in the low speed) with a lower acceleration/deceleration in comparison with the situation in which car driver follow another one. It means that the behavior of the follower car driver would be more cautious compared to situations in which a car driver follows another one, especially in space headways <10?m. In addition to main findings of the paper for developing a more realistic simulation program, the paper also addresses that in cases when the required safe space between a car and a motorcycle would be endangered, a warning message could be generated for the car driver (by implementing an in-veh ITS technology) to warn driver about keeping a safe distance.  相似文献   
9.
Car following models have been studied with many diverse approaches for decades. Nowadays, technological advances have significantly improved our traffic data collection capabilities. Conventional car following models rely on mathematical formulas and are derived from traffic flow theory; a property that often makes them more restrictive. On the other hand, data-driven approaches are more flexible and allow the incorporation of additional information to the model; however, they may not provide as much insight into traffic flow theory as the traditional models. In this research, an innovative methodological framework based on a data-driven approach is proposed for the estimation of car-following models, suitable for incorporation into microscopic traffic simulation models. An existing technique, i.e. locally weighted regression (loess), is defined through an optimization problem and is employed in a novel way. The proposed methodology is demonstrated using data collected from a sequence of instrumented vehicles in Naples, Italy. Gipps’ model, one of the most extensively used car-following models, is calibrated against the same data and used as a reference benchmark. Optimization issues are raised in both cases. The obtained results suggest that data-driven car-following models could be a promising research direction.  相似文献   
10.
Recent studies have provided that the vehicle trajectories generated by car-following models may not represent the real driving characteristics, thus leading to significant emission estimation errors. In this paper, two of the most widely used car-following models, Wiedemann and Fritzsche models, were selected and analyzed based on the massive field car-following trajectories in Beijing. A numerical simulation method was designed to generate the following car’s trajectories by using the field trajectories as the input. By comparing the simulated and the filed data, the representativeness of the simulated regime fractions and VSP distributions were evaluated. Then, the mechanism of car-following models was investigated from the aspects of regime determination and the acceleration rule in each regime. Further, the regime threshold parameters and acceleration model were optimized for emission estimations. This study found that the “Following” regime threshold of SDX and the maximum acceleration in “Free Driving” regime are critical parameters for Wiedemann model. The differences between the Wiedemann simulated VSP distribution and the field one can be reduced separately by applying the optimized SDX and maximum acceleration model individually. However, a much sharper reduction was observed by optimizing both parameters simultaneously, and the emission estimation errors were further reduced, which were less than 4% in the case studies. Fritzsche model generated more realistic VSP distributions and emissions, while the maximum accelerations could be further optimized for high speed conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号