首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
公路运输   8篇
综合类   14篇
水路运输   3篇
综合运输   5篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   9篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  1988年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
This article presents the design of a lane departure avoidance system which is conceived to operate even in demanding manoeuvres with respect to the lateral vehicle dynamics. Piecewise affine state feedback and output feedback controllers are used to handle the nonlinear behaviour of the lateral tyre forces. The controllers are designed based on the search of a piecewise quadratic Lyapunov function casted as a bilinear matrix inequalities problem. Experimental tests demonstrate the performance of the controller in degraded road conditions.  相似文献   
2.
Competition and disruption in a dynamic urban supply chain   总被引:1,自引:0,他引:1  
Rapid changes and complexities in business environments have stressed the importance of interactions between partners and competitors, leading supply chains to become the most important element of contemporary business environments. There is a concomitant need for foresight in describing supply chain performance in all operating environments, including those involving punctuated disruptions. Furthermore, the urban metropolis is now widely recognized to be an environment which is especially vulnerable to supply chain disruptions and for which integrated supply chain decisions can produce very substantial net benefits. Accordingly, this paper presents a dynamic supply chain network model formulated as a differential variational inequality; the model is fashioned to allow consideration of supply chain disruption threats to producers, freight carriers, and retail enterprises. The DVI is solved using a fixed-point algorithm, and a simple numerical example, introduced to illustrate how the impacts of supply chain disruptions may be quantified, is presented.  相似文献   
3.
In this paper we present a dual-time-scale formulation of dynamic user equilibrium (DUE) with demand evolution. Our formulation belongs to the problem class that Pang and Stewart (2008) refer to as differential variational inequalities. It combines the within-day time scale for which route and departure time choices fluctuate in continuous time with the day-to-day time scale for which demand evolves in discrete time steps. Our formulation is consistent with the often told story that drivers adjust their travel demands at the end of every day based on their congestion experience during one or more previous days. We show that analysis of the within-day assignment model is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality. We also show there is a class of day-to-day demand growth models that allow the dual-time-scale formulation to be decomposed by time-stepping to yield a sequence of continuous time, single-day, dynamic user equilibrium problems. To solve the single-day DUE problems arising during time-stepping, it is necessary to repeatedly solve a dynamic network loading problem. We observe that the network loading phase of DUE computation generally constitutes a differential algebraic equation (DAE) system, and we show that the DAE system for network loading based on the link delay model (LDM) of Friesz et al. (1993) may be approximated by a system of ordinary differential equations (ODEs). That system of ODEs, as we demonstrate, may be efficiently solved using traditional numerical methods for such problems. To compute an actual dynamic user equilibrium, we introduce a continuous time fixed-point algorithm and prove its convergence for effective path delay operators that allow a limited type of nonmonotone path delay. We show that our DUE algorithm is compatible with network loading based on the LDM and the cell transmission model (CTM) due to Daganzo (1995). We provide a numerical example based on the much studied Sioux Falls network.  相似文献   
4.
确定旅客列车合理开车范围的代数方法   总被引:3,自引:0,他引:3  
本文应用同余理论,提出一种解不等式组的代数方法,用以确定旅客列车的合理开车范围。并就若干具体情况,详细介绍了计算步骤,可供实际参考使用。  相似文献   
5.
A delay difference inequality was studied, and several results were obtained, which improve the known results. Then a typical integral inequality with two independent variables was studied, and some results were obtained, which extend the known results.  相似文献   
6.
Stability Analysis of Uncertain Discrete Time-Delay Control Systems   总被引:1,自引:0,他引:1  
Based on Lyapunov stability theory, a less conservative sufficient condilions for the stabih'lies of uncertain discrete delayindependent and delay-dependent control systems are obtained by using the linear matrix inequality (LMI) approach. Judgement of the stability of time-delay systems is transformed to judgement of the feasible solution of an LMI, and hence is solved by use of MATLAB. Numerical simulations verify the validity of the proposed method.  相似文献   
7.
分析模糊广义系统的稳定性,利用模糊Lyapunov泛函方法,给出了一类T-S模糊广义系统的容许性条件,并利用静态输出反馈对该系统进行控制,通过求解严格的线性矩阵不等式,得到模糊广义系统可以通过输出反馈控制的充分条件,并保证闭环系统的容许性和满足一定的性能指标.通过数值仿真验证了结论的正确性以及分析方法的有效性.  相似文献   
8.
Abstract

This paper presents a novel application of a Method of Inequality-based Multi-objective Genetic Algorithm (MMGA) to generate an efficient time-effective multi-fleet aircraft routing algorithm in response to the schedule disruption of short-haul flights. It attempts to optimize objective functions involving ground turn-around times, flight connections, flight swaps, total flight delay time and a 30-minute maximum delay time of original schedules. The MMGA approach, which combines a traditional Genetic Algorithm (GA) with a multi-objective optimization method, can address multiple objectives at the same time, then explore the optimal solution. The airline schedule disruption management problem is traditionally solved by Operations Research (OR) techniques that always require a precise mathematical model. However, airline operations involve too many factors that must be considered dynamically, making a precise mathematical model difficult to define. Experimental results based on a real airline flight schedule demonstrate that the proposed method, Multi-objective Optimization Airline Disruption Management by GA, can recover the perturbation efficiently within a very short time. Our results further demonstrate that the application can yield high quality solutions quickly and, consequently, has potential to be employed as a real-time decision support tool for practical complex airline operations.  相似文献   
9.
Introduction   Control of time- delay systems has been an at-tractive field in control theory and applicationssince the time- delay systems are frequently en-countered in the real world.They are much differ-ent from their non- delay counterparts.For exam-ple,it is well known that the existence of delaysmay degrade the respond of the closed- loop sys-tems,or even induce instability[1] .Hence,theavailable results of non- delay sytems can notbe di-rectly applied to time- delay systems in genera…  相似文献   
10.
This paper presents an approach to design the H /GH 2 static-output feedback controller for vehicle suspensions by using linear matrix inequalities (LMIs) and genetic algorithms (GAs). Three main performance requirements for an advanced vehicle suspension are considered in this paper. Among these requirements, the ride-comfort performance is optimized by minimizing the H norm of the transfer function from the road disturbance to the sprung mass acceleration, while the road-holding performance and the suspension deflection limitation are guaranteed by constraining the generalized H 2 (GH 2) norms of the transfer functions from the road disturbance to the dynamic tyre load and the suspension deflection to be less than their hard limits, respectively. At the same time, the controller saturation problem is considered by constraining its peak response output to be less than a given limit using the GH 2 norm as well. A four-degree-of-freedom half-car model with active suspension system is applied in this paper. Several kinds of H /GH 2 static-output feedback controllers, which use the available sprung mass velocities or the suspension deflections as feedback signals, are obtained by using the GAs to search for the possible control gain matrices and then resolving the LMIs together with the minimization optimization problem. These designed H /GH 2 static-output feedback controllers are validated by numerical simulations on both the bump and the random road responses which show that the designed H /GH 2 static-output feedback controllers can achieve similar or even better active suspension performances compared with the state-feedback control case in spite of their simplicities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号