首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
水路运输   11篇
铁路运输   1篇
  2015年   1篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   
2.
The paper aims at investigating the trends of the concentrations of dissolved inorganic nitrogen (DIN) and phosphorous in the Lagoon of Venice, Italy, in the last 35 years. The trend analysis of ammonia nitrogen, nitrate nitrogen and reactive phosphorus (RP) yielded rather different results. The decrease in ammonia nitrogen concentration, in particular, in the basin influenced by severe industrial discharges, is accurately described by a negative exponential model. The nitrate concentration did not show significant interannual trends, while wide seasonal variations have been detected. Reactive phosphorus concentration increased until the end of the 1970s at the stations close to the industrial area as well as in those influenced by river discharges and by sewages of the city of Venice. The sudden decrease that followed was most likely related with environmental policies, namely the improvement of wastewater purification treatments and the regulation of phosphorus use in detergents.  相似文献   
3.
Eddy systems are a unique ecosystem, usually having high biological masses and primary production in the sea. In this study, both particulate and dissolved phases of cadmium in the water column of 15 stations over a cyclonic eddy in the southern East China Sea were determined to obtain their spatial distributions. This allows us to confirm that cyclonic eddy systems play the role of a Cd pump in the sea.Results showed that particulate Cd (PCd) and dissolved Cd (DCd) concentrations in water varied greatly, ranging over two orders and one order of magnitude, respectively. Large spatial variability was found not only for PCd but also for DCd in the upper water, apparently due to the effects of the cyclonic eddy system on the Cd distributions over the study area. DCd accounts for about 99% of the total Cd. For the surface water, DCd concentration at the eddy center was about five times the average of the water surrounding the eddy center. The depth distributions of DCd exhibited a typical surface depletion and a subsequent increase with depth; however, the PCd distribution showed the opposite, i.e. a surface maximum and a subsequent decline with depth. In general, the DCd maxima were found at depths of 600–1000 m, agreeing well with the literature. It reflected the internal biogeochemical cycling of Cd in the water column, which was driven by the utilization of Cd by plankton in the euphotic zone and by the regeneration of Cd at depth. In addition, a remarkably high DCd concentration existed in near-bottom water around the cyclonic eddy center.The horizontal distributions of both PCd and DCd in the upper water shared a common feature with elevated concentrations centering around the eddy center and a decline in concentration with distance from the eddy center. This shows that the cyclonic eddy could bring up the Cd-rich deep water to the surface water around the eddy center and could then expand toward eddy's vicinity via advection–diffusion. It is thus likely that it produces ample biological masses over the eddy system. Hence, this work can demonstrate that the ascending nutrient-rich water driven by the cyclonic eddies can serve as an important source not only for many nutrients but also for Cd in the sea.  相似文献   
4.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   
5.
An understanding of microbial interactions in first-year sea ice on Arctic shelves is essential for identifying potential responses of the Arctic Ocean carbon cycle to changing sea-ice conditions. This study assessed dissolved and particulate organic carbon (DOC, POC), exopolymeric substances (EPS), chlorophyll a, bacteria and protists, in a seasonal (24 February to 20 June 2004) investigation of first-year sea ice and associated surface waters on the Mackenzie Shelf. The dynamics of and relationships between different sea-ice carbon pools were investigated for the periods prior to, during and following the sea-ice-algal bloom, under high and low snow cover. A predominantly heterotrophic sea-ice community was observed prior to the ice-algal bloom under high snow cover only. However, the heterotrophic community persisted throughout the study with bacteria accounting for, on average, 44% of the non-diatom particulate carbon biomass overall the study period. There was an extensive accumulation of sea-ice organic carbon following the onset of the ice-algal bloom, with diatoms driving seasonal and spatial trends in particulate sea-ice biomass. DOC and EPS were also significant sea-ice carbon contributors such that sea-ice DOC concentrations were higher than, or equivalent to, sea-ice-algal carbon concentrations prior to and following the algal bloom, respectively. Sea-ice-algal carbon, DOC and EPS-carbon concentrations were significantly interrelated under high and low snow cover during the algal bloom (r values ≥ 0.74, p < 0.01). These relationships suggest that algae are primarily responsible for the large pools of DOC and EPS-carbon and that similar stressors and/or processes could be involved in regulating their release. This study demonstrates that DOC can play a major role in organic carbon cycling on Arctic shelves.  相似文献   
6.
The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely variable, and their characterization requires an extensive sampling program to provide data over meaningful scales of time and space. In contrast, benthic faunal communities integrate the impacts of low DO over time, and can be rapidly assessed using benthic imaging. The goal of this study was to quantify the relationships between near-bottom dissolved oxygen and measures derived from benthic imaging with a sediment profile camera. We monitored three stations in Narragansett Bay (Rhode Island, USA) for DO and other water quality parameters 15–20 cm above the sediment surface on 15-minute intervals between July and November 2002, and regularly sampled these stations with a sediment profile camera throughout this time period. These soft-sediment stations encompassed several DO environments. We tested for relationships between near-bottom DO and several camera measures, including Nilsson and Rosenberg's Benthic Habitat Quality (BHQ) index, the apparent Redox Potential Discontinuity (aRPD) depth, and various faunal features that can be identified in sediment profile images. Camera measures were examined against a variety of methods of characterizing DO (including mean DO, and the percent of time under various DO thresholds), over a span of time scales from 1 day to 49 days. The best relationship (highest r2) between near-bottom DO and BHQ was found when DO was evaluated as the percent of time under a hypoxic threshold of 2.6 mg l− 1 over a 28-day time scale (by examining DO records over the 28 days preceding each camera deployment). We found that, over several benthic settings, the BHQ index was successful at identifying environments that had experienced relatively high or low DO over the preceding four weeks. Our sediment profile data showed more variability with DO in the intermediate values of BHQ. We conclude that sediment profile camera measures correlate to DO in areas where low DO is the primary stressor, integrate DO over ecologically relevant time scales, and enable sampling over spatial scales that are meaningful for mapping by virtue of rapid deployment and analysis. We submit that sediment profile camera imagery is a useful assessment and mapping tool for environmental managers interested in benthic condition and in first-order quantitative estimates of near-bottom DO regimes in areas where low DO is the primary benthic stressor.  相似文献   
7.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   
8.
Air–sea flux measurements of O2 and N2 obtained during Hurricane Frances in September 2004 [D'Asaro, E. A. and McNeil, C. L., 2006. Measurements of air–sea gas exchange at extreme wind speeds. Journal Marine Systems, this edition.] using air-deployed neutrally buoyant floats reveal the first evidence of a new regime of air–sea gas transfer occurring at wind speeds in excess of 35 m s− 1. In this regime, plumes of bubbles 1 mm and smaller in size are transported down from near the surface of the ocean to greater depths by vertical turbulent currents with speeds up to 20−30 cm s− 1. These bubble plumes mostly dissolve before reaching a depth of approximately 20 m as a result of hydrostatic compression. Injection of air into the ocean by this mechanism results in the invasion of gases in proportion to their tropospheric molar gas ratios, and further supersaturation of less soluble gases. A new formulation for air–sea fluxes of weakly soluble gases as a function of wind speed is proposed to extend existing formulations [Woolf, D.K, 1997. Bubbles and their role in gas exchange. In: Liss, P.S., and Duce, R.A., (Eds.), The Sea Surface and Global Change. Cambridge University Press, Cambridge, UK, pp. 173–205.] to span the entire natural range of wind speeds over the open ocean, which includes hurricanes. The new formulation has separate contributions to air–sea gas flux from: 1) non-supersaturating near-surface equilibration processes, which include direct transfer associated with the air–sea interface and ventilation associated with surface wave breaking; 2) partial dissolution of bubbles smaller than 1 mm that mix into the ocean via turbulence; and 3) complete dissolution of bubbles of up to 1 mm in size via subduction of bubble plumes. The model can be simplified by combining “surface equilibration” terms that allow exchange of gases into and out of the ocean, and “gas injection” terms that only allow gas to enter the ocean. The model was tested against the Hurricane Frances data set. Although all the model parameters cannot be determined uniquely, some features are clear. The fluxes due to the surface equilibration terms, estimated both from data and from model inversions, increase rapidly at high wind speed but are still far below those predicted using the cubic parameterization of Wanninkhof and McGillis [Wannikhof, R. and McGillis, W.R., 1999. A cubic relationship between air–sea CO2 exchange and wind speed. Geophysical Research Letters, 26:1889–1892.] at high wind speed. The fluxes due to gas injection terms increase with wind speed even more rapidly, causing bubble injection to dominate at the highest wind speeds.  相似文献   
9.
贵瓮高速公路建中隧道施工难点及治理措施   总被引:1,自引:1,他引:0  
溶腔、洞室和软弱破碎带是岩溶地区隧道施工的难点和重点。贵瓮高速建中隧道在施工过程中出现了围岩与设计情况不符以及溶洞塌方等问题,严重影响了施工进度。为此,通过对国内典型岩溶隧道设计施工案例进行分析借鉴,结合建中隧道的工程地质条件,在围岩与设计情况不符段进行方案修改,加强支护;在溶洞塌方段进行掌子面封闭、深孔注浆、回填混凝土等治理措施。经采取上述措施后,拱顶沉降和隧道周边位移均小于控制标准,效果良好。  相似文献   
10.
Effect of mixing on microbial communities in the Rhone River plume   总被引:1,自引:0,他引:1  
The biological processes involved during mixing of a river plume with the marine underlying water were studied off the Rhone River outlet. Samples of suspended and dissolved matter were collected while tracking a drifting buoy. Three trajectories were performed, at 2-day intervals, under different hydrological and meteorological situations. A biological uptake was evidenced from ammonium (NH4) and phosphate (PO4) shortage, indicating an early “NH4-dependent” functioning occurring before the well-known “NO3-based” cycle. The different ratios between NH4, NO3 and PO4, as a function of salinity, were discussed to detail the preferential use in PO4 and NH4. Salinity zones with enhanced bacterial production, high chlorophyll a concentration, as well as DOC, NH4 and PO4 consumption were evidenced from 20 to 35 in salinity. It was shown that the successive abundance of bacteria and phytoplankton during transfer reflected the competition for PO4 of both communities. On the Rhone River plume, the role played by temperature, light conditions and suspended matter upon biological activity seems relatively minor compared to salinity distribution and its related parameter: nutrient availability. It can be concluded that biological uptake in the Rhone River plume was closely related to the dilution mechanism, controlled itself by the dynamics of the plume. In windless conditions and close to the river mouth, the density gradient between marine and river water induced limited exchanges between the nutrient-rich freshwater and the potential consumers in the underlying marine water. Consequently, little biological activity is observed close to the river mouth. Offshore, mixing is enhanced and a balance is reached between salinity tolerance and nutrient availability to form a favourable zone for marine phytoplankton development. This can be quite far from the river mouth in case of a widely spread plume, corresponding to high river discharge. Under windy and wavy conditions, the plume freshwater is early and rapidly mixed, so that the extension of the “enhanced production zone” is drastically reduced and even bacteria could not benefit from the fast mixing regime induced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号