排序方式: 共有54条查询结果,搜索用时 0 毫秒
1.
This paper analyses the importance of mooring design parametrisation on the dynamic behaviour of mooring loads. An exhaustive sensitivity analysis is performed to evaluate the variability of mooring loads because of inaccuracies in the definition of model inputs, including physical and numerical parameters. Results show a relevant dependence on the length and significance in other parameters, such as the weight together with the hydrodynamic equivalent diameter and the drag forces. An inaccuracy below 1% in the mooring reference length can generate loads of up to twice the design, and an incorrect definition of the weight or the drag coefficient in the mooring design can lead to a design load variability of up to 30%. Stiffness plays a crucial role in snap events, reaching load differences of 19% depending on the stiffness selected.This research is based on a set of numerical models capable of predicting the mooring system response. A dynamic numerical model with two schemes of resolution is implemented and calibrated according to an experimental test campaign. Other sources of results provided by a quasi-static model and commercial software, Sesam (DNV-GL), are incorporated. In general, the dynamic numerical models show a good accuracy with an experimental database composed by a set of 2D prescribed movement tests at the fairlead of the mooring system. 相似文献
2.
A fracture mechanics (FM) based investigation on the mechanism of out-of-plane bending (OPB) between mooring chain links and its effects on fatigue lives of mooring chain links are conducted. Four types of OPB problems that mooring chain links laying on the chain wheel, chain links passing over the bending shoe, chain links constraint provided by the chain hawse, and chain links constraint provided by the chain stopper are considered. Tension ranges of mooring lines are calculated based on the combined loading process induced by the motions of wave frequency (WF) and low frequency (LF). Initial cracks are assumed to propagate from surfaces of chain links and stress intensity factors are calculated in terms of stress ranges determined by a finite element (FE) analysis. The results show that fatigue lives of mooring chain links are decreased significantly due to OPB effects. In addition, the increase of the number of pockets of chain wheel mitigates OPB effects on fatigue lives of mooring chain links laying on the chain wheel, and the increase of the track diameter would reduce OPB effects on fatigue lives of mooring chain links passing over the bending shoe as well. However, for chain links constraint provided by the chain hawse, the diameter of mooring chain hawse has no significant effect on fatigue lives of the mooring chain links subject to OPB if without the abrupt change of the contact conditions between chain links and chain hawse. For mooring links constraint provided by chain stoppers considering the effect of proof loading test, fatigue lives of mooring chain links would drop significantly with the increase of interlink angles and friction coefficient. 相似文献
3.
This review presents a systematic summary of the state-of-the-art development of technological solutions, modeling, and control strategies of thruster-assisted position mooring (TAPM) systems. The survey serves as a starting point for exploring automatic control and real-time monitoring solutions proposed for TAPM systems. A brief historical background of the mooring systems is given. The kinematics and a simplified kinetic control-design model of a TAPM system are derived in accordance with established control methods, including a quasistatic linearized model for the restoring and damping forces based on low-frequency horizontal motions of the vessel. In addition, another two mooring line models, i.e., the catenary equation and the finite element method model, are presented for the purpose of higher-fidelity simulations. The basic TAPM control strategies are reviewed, including heading control, surge-sway damping, roll–pitch damping (for semisubmersibles), and line break detection and compensation. Details on the concepts of setpoint chasing for optimal positioning of a vessel at the equilibrium position are discussed based on balancing the mooring forces with the environmental loads and avoiding mooring line failure modes. One method for setpoint chasing is the use of a structural reliability index, accounting for both mean mooring line tensions and dynamic effects. Another method is the use of a lowpass filter on the position of the vessel itself, to provide a reference position. The most advanced method seems to be the use of a fault-tolerant control framework that, in addition to direct fault detection and isolation in the mooring system, incorporates minimization of either the low-frequency tensions in the mooring lines or minimization of the reliability indices for the mooring lines to select the optimal directions for the setpoint to move. A hybrid (or supervisory switching) control method is also presented, where a best-fit control law and observer law are automatically selected among a bank of control and observer algorithms based on the supervision of the sea-state and automatic switching logic. 相似文献
4.
5.
本文给出了船舶锚泊时所受到的风作用力、水作用力和放出锚链长度的计算公式,以及实用数表和曲线图,可供查取。数表和曲线是根据文中确定的如下关系式编绘:L_b≈1/2Ln;L≈1.5L。(其中L_b——卧底锚链长度;L_n——悬垂锚链长度;L——放出锚链总长度)。十一例实船计算表明,根据上式计算结果,与目前国内外通用的方法确定的放链长度相符。利用这些数表和曲线图,既可合理地确定不同海况下船舶所应放出的锚链长度,也可减少起锚时的功率消耗和缩短起锚时间。 相似文献
6.
Traditionally, the design of mooring lines and risers of floating production systems (FPS) has been performed separately, by different teams, employing uncoupled analysis tools that do not consider the nonlinear interaction between the platform hull and the mooring lines and risers. Design processes have been focused on fulfilling the design criteria of the respective component (mooring/riser) alone, with few or no consideration to the other component, and little interaction between the design teams. Nowadays the importance of employing analysis tools based on coupled formulations is widely recognized, and analysis strategies have been proposed to consider feedback between mooring lines and risers within their respective design processes.In this context, this work details a proposal of one single and fully integrated design methodology for mooring systems and risers for deep-water FPS. In this methodology, the design stages of both risers and mooring lines are incorporated in a single spiral, allowing the full interaction of different teams; mooring design implicitly considers the riser integrity, and vice-versa, leading to gains in efficiency and cost reduction.Different analysis strategies are employed, taking advantage of uncoupled and coupled numerical models. The models generated at the initial/intermediate design stages can be reused in subsequent stages: simpler models are used in the initial stages, and more refined models are gradually introduced, to reach an ideal balance between computational cost and accuracy of results. In the advanced stages, the exchange of information between mooring/riser also allows the definition of criteria for the selection of governing/critical loading cases to be revised and verified in detail. This leads to the reduction of the original loading case matrix, allowing a feasible use of time-consuming fully coupled analysis.Results of a case study illustrating the application of some of the main processes of the methodology are included. 相似文献
7.
Internal solitary waves with a huge amount of energy easily trigger the large dynamic responses of riser-wellhead system and threaten its structural safety. However, previous studies have only focused on the dynamic response of the riser under internal solitary waves. The riser may experience excessive traction from the platform, especially from the mooring platform, in response to the arrival of internal solitary waves. The bottom of the riser connects to the wellhead system, which in turn exerts a reaction force on the riser. To address this problem, a coupled dynamic model of deep-water drilling mooring platform-riser-wellhead system under internal solitary waves is developed in this paper. A dynamic response analysis method based on the fourth-order Runge-Kutta method and finite element method is also proposed for the mooring platform-riser-wellhead system. A dynamical solver for the coupled system is then developed using MATLAB. The dynamic response characteristics of the riser-wellhead system under internal solitary waves are calculated. Results show that the displacement and bending moment of the system initially increases and then decreases along with the propagation of internal solitary waves, and finally reach equilibrium position. The displacement and bending moment reach their peak before the trough of internal solitary waves passes through the riser-wellhead system. The dynamic responses of the riser-wellhead system under the influence of internal solitary wave loads are much larger than those without the effect of internal solitary wave loads. The riser system experiences shearing loads at the interface of internal solitary waves, which trigger a step-like bending moment variation. The bending moment of the conductor under the mudline is greatly increased by the internal solitary waves. 相似文献
8.
9.
10.
基于神经网络和遗传算法的系泊线长度参数优化 总被引:1,自引:0,他引:1
摘 要: 针对多成分系泊线三段长度如何取值的问题,采用一种基于神经网络和遗传算法对深海多成分锚泊系统长度进行优化。应用AQWA软件计算多点系泊FPSO,其时域结果直接用于训练BP神经网络。从而利用神经网络的非线性映射功能构建替代锚泊时域计算网络,大大缩短了优化所需的时间。以FPSO最小平面运动值为目标函数,锚链破断强度作为约束条件,采用遗传算法优化系泊长度。计算结果表明,与传统设计的锚泊长度相比,优化后FPSO在各个浪向下纵荡横荡值均能减少20%以上。关键词:系泊;神经网络;遗传算法;优化 相似文献