首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
水路运输   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
Suction caissons are one of the most widely used foundation solutions for subsea structures and wind farms. Seismic response of subsea structures is however seldom documented properly, often just treated as a foundation capacity issue applying a quasi-static acceleration and not considering the inertial interaction between the structure and the soil. The more relevant tasks to document are the motions of the unit and the response of the externally connected flowlines and equipment/systems on the unit.Based on a case study located in the Shah Deniz field in the Caspian Sea, model centrifuge tests and numerical modelling were carried out to validate the global response of a 4-caisson supported manifold structure subject to seismic motions in soft clay. The centrifuge tests were carried out at 58 g at the centre for geotechnical modelling at UC Davis. To simulate the soil-structure interaction, a series of non-linear springs defined by kinematic hardening models were used in analyses with the ABAQUS software. This development includes the algorithms for determining the required model parameters. A very good agreement between recorded response from the centrifuge test and calculated response from the FE-analyses was achieved.The development and validation of the soil model presented in this paper is an improvement in design methodology for caisson foundations subjected to earthquake loading. The non-linear soil springs are well suited to incorporate in more detailed structural analyses where an accurate representation of the foundation response is required. The paper also briefly describes how the subsequent earthquake design analyses were performed for the Shah Deniz manifold structures making use of the validated soil spring model and the added value it gave to the project.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号