首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
水路运输   8篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The Agulhas Current with its retroflection and attendant eddy-shedding is the cause of some of the greatest mesoscale variability in the ocean. This paper considers the area to the south and east of Madagascar, which provides some of the source waters of the Agulhas Current, and examines the propagating sea surface height signals in altimetry and output from a numerical model, OCCAM. Both show bands of variability along the axis of the East Madagascar Current (EMC) and along a zonal band near 25°S. Sequences of images plus associated temperature data suggest that a number of westward-propagating eddies are present in this zonal band. The paper then focuses on the region to the south of the island, where ocean colour and infra-red imagery are evocative of an East Madagascar Retroflection. The synthesis of data analysed in this paper, however, shows that remotely observed features in this area can be explained by anticyclonic eddies moving westward through the region, and this explanation is consistent with numerical model output and the trajectories of drifting buoys.  相似文献   
2.
Columbia River tidal plume dynamics can be explained in terms of two asymmetries related to plume-front depth and internal wave generation. These asymmetries may be an important factor contributing to the observed greater primary productivity and phytoplankton standing crop on the Washington shelf. The tidal plume (the most recent ebb outflow from the estuary) is initially supercritical with respect to the frontal internal Froude number FR on strong ebbs. It is separated from the rotating plume bulge by a front, whose properties are very different under upwelling vs. downwelling conditions. Under summer upwelling conditions, tidal plume fronts are sharp and narrow (< 20–50 m wide) on their upwind or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water. Such sharp fronts are a source of turbulent mixing, despite the strong stratification. Because the tidal plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would suggest that there should be a sharp front south of the estuary mouth under summer downwelling conditions. Instead, the downwelling tidal plume front is usually diffuse on its upstream side. Mixing is weaker, and the water masses immediately below are low in nutrients. There is also an upwelling–downwelling asymmetry in internal wave generation. During upwelling and weak wind conditions, plume fronts often generate trains of non-linear internal waves as they transition from a supercritical to a subcritical state. Under downwelling conditions, internal wave release is less common and the waves are less energetic. Furthermore, regardless of wind conditions, solition formation almost always begins on the south side of the plume so that the front “unzips” from south to north. This distinction is important, because these internal waves contribute to vertical mixing in the plume bulge and transport low-salinity water across the tidal plume into the plume bulge.FR and plume depth are key parameters in distinguishing the upwelling and downwelling situations, and these two asymmetries can be explained in terms of potential vorticity conservation. The divergence of the tidal outflow after it leaves the estuary embeds relative vorticity in the emerging tidal plume water mass. This vorticity controls the transition of the tidal plume front to a subcritical state and consequently the timing and location of internal wave generation by plume fronts.  相似文献   
3.
4.
We have evaluated the impact of assimilating chlorophyll, nitrate, phosphate, silicate and ammonium into a coupled 1D hydrodynamic ecosystem model (GOTM-ERSEM) in an upwelling influenced estuary. The assimilation method chosen is the Ensemble Kalman Filter (EnKF), which has been demonstrated to improve field estimates of key variables (chlorophyll, nutrients) for bulk algal bloom prediction. The 1D model has been set up for a central station inside the Ría de Vigo (Spain). Data from bi-weekly surveys are used to constrain the model. Temperature and salinity profiles are used to ensure the correct representation of the water structure through a relaxation scheme. Chlorophyll extracts and nutrients at three depths are assimilated sequentially during 1 year simulation (1991). The assimilation period includes episodes of active upwelling and downwelling. All five assimilated variables are successfully constrained and represent a large improvement on the reference simulation (without assimilation). Small divergences can be related to poorly resolved physical processes in the model. The assimilation was further evaluated by comparing observed biomass partitioning with model results. Diatoms accounted for the largest biomass update and the largest improvement in terms of percentage of variance explained (R2). This is particularly significant as they represent the 46% of the yearly integrated observed biomass of the planktonic autotrophs. Nonetheless the R2 value was low for all phytoplankton groups. Bacteria and nanoflagellates showed an improvement with respect to their yearly Root Mean Square (RMS), while the other functional groups worsen or remained unaffected. Chlorophyll assimilation was responsible for most of the impact on the phytoplankton biomass with small contributions from the silicate. It had minor impact on the updates of nutrients which in turn corrected the state variables related to the detrital pool. In this current setting, combined assimilation of chlorophyll and nutrients is not sufficient to produce a skillful simulation of the phytoplankton succession.  相似文献   
5.
6.
Ekman transport is studied close to the Galician coast by means of wind data provided by the QuikSCAT satellite from November 1999 to October 2005. Three different coastal zones are identified, western coast from Miño River to Cape Finisterre, middle coast from Cape Finisterre to Cape Ortegal and northern coast, from Cape Ortegal to Cape Peñas. In addition to existence of long-term variations, the periodicity of the transport signal is characterized by an annual component (365 days), a seasonal fluctuation (50–80 days) and a time scale related to passing storms (15–20 days). Although the periodicity of the signal is similar at the three zones due to external meteorological forcing, the Ekman transport is modulated by the presence of the coast, in such a way that seasonal patterns vary in intensity and direction along the coast. Thus, the spring–summer pattern is characterized by high transport at the western coast, pointing seaward perpendicular to the shore-line. The same orientation is observed at the middle coast although with a lower magnitude. Finally, Ekman transport at the northern coast points landward and oblique to the shore-line. The different transport orientations are shown to be responsible for the upwelling probability variation along the coast. On the other hand, the autumn–winter pattern does not show a clear trend with important inter-annual differences showing the high variability of Ekman transport for this period.  相似文献   
7.
A multiproxy study of the sedimentary record carried out on gravity core CGPL00-1 retrieved from the outer Galician continental shelf (NW of Spain) has allowed us to establish the main climate fluctuations affecting the region during the Upper Holocene. Grain size, TOC, C/N ratio, biogenic opal and planktonic foraminifera are the main analysed parameters. Lithology and grain size distribution lead to identify two sedimentary sequences: a lower half mainly composed by glauconitic sand and a muddy upper half. A chronology has been established based on three AMS radiocarbon ages, 907 cal. BC, 898 cal. BC and 1399 AD, and the aforementioned sedimentary sequences. The obtained radiocarbon ages are the first dated sediment samples for the Galician continental shelf. Geochemical markers show different trends in both sequences: low and/or fluctuating values in the sandy sequence and high and relatively constant values in the upper muddy sequence. The whole sandy interval is interpreted to be a nearly instantaneous deposit from a distal storm ebb current. The muddy interval was deposited in a stable and low-energy marine environment, similar to that found on the present outer shelf. The shift from a storm-dominated shelf to a low-energy environment took place synchronous with the Subboreal/Subatlantic transition, when an increase in storminess appears related to climatic instability. Transitional planktonic foraminiferal assemblage dominates the whole record, although a change to more abundant cold water species at 1420 AD, may relate to an intense upwelling pulse, probably reinforced by colder atmospheric temperatures during the Little Ice Age (LIA). Despite the presence of an upwelling regime since 1420 AD, lesser amount of opal has accumulated in the outer shelf due to enhanced offshore transport and stronger remineralization.  相似文献   
8.
Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the δ15N-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk δ15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号