首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合运输   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The Traffic Alert and Collision Avoidance System (TCAS) is a world-wide accepted last-resort means of reducing the probability and frequency of mid-air collisions between aircraft. Unfortunately, it is widely known that in congested airspace, the use of the TCAS may actually lead to induced collisions. Therefore, further research regarding TCAS logic is required. In this paper, an encounter model is formalised to identify all of the potential collision scenarios that can be induced by a resolution advisory that was generated previously by the TCAS without considering the downstream consequences in the surrounding traffic. The existing encounter models focus on checking and validating the potential collisions between trajectories of a specific scenario. In contrast, the innovative approach described in this paper concentrates on quantitative analysis of the different induced collision scenarios that could be reached for a given initial trajectory and a rough specification of the surrounding traffic. This approach provides valuable information at the operational level. Furthermore, the proposed encounter model can be used as a test-bed to evaluate future TCAS logic changes to mitigate potential induced collisions in hot spot volumes. In addition, the encounter model is described by means of the coloured Petri net (CPN) formalism. The resulting state space provides a deep understanding of the cause-and-effect relationship that each TCAS action proposed to avoid an actual collision with a potential new collision in the surrounding traffic. Quantitative simulation results are conducted to validate the proposed encounter model, and the resulting collision scenarios are summarised as valuable information for future Air Traffic Management (ATM) systems.  相似文献   
2.
The traffic collision avoidance system (TCAS) acts as a proverbially accepted last-resort means to resolve encounters effectively, while it also has been proven to potentially induce a collision in the hectic air traffic. Thus, new research considering the impact on safety is required to increase the airspace capacity based on a comprehensive analysis and accurate flight evaluation. In this paper, a causal encounter model is proposed to extend the TCAS logic considering the horizontal resolution manoeuvres, which could be used as the auxiliary supports when a potential collision is predicted in the vertical dimension. Based on the generated state space, the model developed in the graphical modelling and analysis software (GMAS), not only provides a better comprehension of the potential collision occurrences for risk assessment by representing the cause-effect relationship of each action, but also aids the pilots in the involved aircraft to make a cooperative and optimal option. Quantitative simulation results are conducted to validate the feasibility and effectiveness of the encounter model with horizontal resolution. The resulting collision scenarios are further investigated to illustrate that the risk rate of TCAS logic failures is expected to reduce by shortening the pilot's response delay, and the computational efficiency is competent in dealing with multi-threat scenarios.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号