首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   12篇
公路运输   25篇
综合类   20篇
水路运输   16篇
铁路运输   45篇
综合运输   91篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   14篇
  2019年   4篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   13篇
  2014年   16篇
  2013年   17篇
  2012年   13篇
  2011年   16篇
  2010年   9篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有197条查询结果,搜索用时 218 毫秒
1.
本文将从航空经济链条体系结构入手,运用投入产出法对航空货运业与各产业部门的关联性进行定量分析,构建以运输成本为主要影响因素的区位选择指标分析货运枢纽机场的产业带动机制。最后本文对目前我国航空货运业对国民经济的整体贡献进行评价,并提出通过航空货运业带动区域经济发展的政策建议。  相似文献   
2.
刘月  陈楠 《综合运输》2022,(1):104-107+138
新形势下,优化中国机场货运规模体系对中国民航高质量发展和民航强国建设具有重要现实意义。从总量规模、货运功能、整体优化水平的多视域角度可以对中国机场货运规模体系进行综合评价。分析表明:(1)目前,我国航空货运形成了"4+3+N"机场发展格局;(2)我国机场货运功能整体呈现"低水平、扁平化"发展态势;(3)我国机场货邮规模体系优化程度有待提高,与美国也存在一定发展差距。本文的政策涵义在于,中国机场货运规模体系优化要有系统性思维,结合当前发展新形势和新机遇,重点应在供需两侧、系统布局、改革协同三个维度进行顶层设计。  相似文献   
3.
液化天然气(LNG)接卸港工程   总被引:1,自引:0,他引:1  
介绍了LNG国际贸易、接收站建设、LNG运输船、接卸港口工程的选址及设计、分销输运方式,讨论了关于《液化天然气码头设计规程》(试行)的修订意见。  相似文献   
4.
弓网电弧对机场终端全向信标台电磁骚扰的影响   总被引:1,自引:0,他引:1  
选取高速电气化铁路电分相、锚段关节和普通点3个典型位置,采用点频测试和峰值、准峰值、平均值检波方式,在机场终端全向信标台(TVOR)的工作频段内开展弓网离线电弧电磁辐射测试;以某电气化铁路线路垂直下穿机场跑道为例,研究弓网离线电弧对TVOR的电磁骚扰影响。结果表明:电分相处的弓网离线电弧电磁骚扰最大,在频率为110 MHz时峰值检波的10m法值达89.4dBμV·m-1;普通点和锚段关节处的弓网离线电弧电磁辐射不会对TVOR产生影响,即便拉弧点位于铁路线路与机场跑道交叉点处,仍能满足防护率的要求,而电分相处拉弧点距铁路线路与飞机跑道交叉点的距离大于236m时,才能满足防护率要求。研究结果能够为机场区域轨道交通和机场航空的电磁兼容性设计提供依据。  相似文献   
5.
以广州地铁4号线和首都机场线引进的、国际领先水平的新型轨道结构(直线电机牵引系统)为研究对象,结合轨道工程施工实际,分析日本直线电机牵引和加拿大庞巴迪直线电机牵引城轨整体道床(尤其是道岔)铺设施工的技术特点,着重阐述首都机场线施工中的关键技术及解决方法。  相似文献   
6.
Aircraft noise has been regarded as one of the major environmental issues related to air transport. Many airports have introduced a variety of measures to reduce its impact. Several air traffic assignment strategies have been proposed in order to allocate noise more wisely. Even though each decision regarding the assignment of aircraft to routes should consider population exposure to noise, none of the air traffic assignment strategies has addressed daily migrations of population and number of people exposed to noise. The aim of this research is to develop a mathematical model and a heuristic algorithm that could assign aircraft to departure and arrival routes so that number of people exposed to noise is as low as possible, taking into account temporal and spatial variations in population in an airport’s vicinity. The approach was demonstrated on Belgrade airport to show the benefits of the proposed model. Numerical example showed that population exposure to noise could be reduced significantly by applying the proposed air traffic assignment model. As a consequence of the proposed air traffic assignment, overall fuel consumption increased by less than 1%.  相似文献   
7.
The rapid growth in air traffic has resulted in increased emission and noise levels in terminal areas, which brings negative environmental impact to surrounding areas. This study aims to optimize terminal area operations by taking into account environmental constraints pertaining to emission and noise. A multi-objective terminal area resource allocation problem is formulated by employing the arrival fix allocation (AFA) problem, while minimizing aircraft holding time, emission, and noise. The NSGA-II algorithm is employed to find the optimal assignment of terminal fixes with given demand input and environmental considerations, by incorporating the continuous descent approach (CDA). A case study of the Shanghai terminal area yields the following results: (1) Compared with existing arrival fix locations and the first-come-first-serve (FCFS) strategy, the AFA reduces emissions by 19.6%, and the areas impacted by noise by 16.4%. AFA and CDA combined reduce the emissions by 28% and noise by 38.1%; (2) Flight delays caused by the imbalance of demand and supply can be reduced by 72% (AFA) and 81% (AFA and CDA) respectively, compared with the FCFS strategy. The study demonstrates the feasibility of the proposed optimization framework to reduce the environmental impact in terminal areas while improving the operational efficiency, as well as its potential to underpin sustainable air traffic management.  相似文献   
8.
9.
In this paper, an efficient trajectory planning system is proposed to solve the integration of arrivals and departures on parallel runways with a novel route network system. Our first effort is made in designing an advanced Point Merge (PM) route network named Multi-Level Point Merge (ML-PM) to meet the requirements of parallel runway operations. Then, more efforts are paid on finding a complete and efficient framework capable of dynamically modelling the integration of arrival and departure trajectories on parallel runways, modelling the conflict detection and resolution in presence of curved trajectory and radius-to-fix merging process. After that, a suitable mathematical optimization formulation is built up. Receding Horizon Control (RHC) and Simulated Annealing (SA) algorithms are proposed to search the near-optimal solution for the large scale trajectories in routine dense operations. Taking Beijing Capital International Airport (BCIA) as a study case, the experimental results show that our system shows good performances on the management of arrivals and departures. It can automatically solve all the potential conflicts in presence of dense traffic flows. With its unique ML-PM route network, it can realize a shorter flying time and a near-Continuous Descent Approach (CDA) descent for arrival aircraft, an economical climbing for departure aircraft, an easier runway allocation together with trajectory control solutions. It shows a good and dynamic sequencing efficiency in Terminal Manoeuvring Area (TMA). In mixed ML-PM mode, under tested conditions, our proposed system can increase throughput at BCIA around 26%, compared with baseline. The methodology defined here could be easily applied to airports worldwide.  相似文献   
10.
Many airports are encountering the problem of insufficient capacity, which is particularly severe in periods of increased traffic. A large number of elements influence airport capacity, but one of the most important is runway occupancy time. This time depends on many factors, including how the landing roll procedure is performed. The procedure usually does not include the objective to minimize the runway occupancy time. This paper presents an analysis which shows that the way of braking during landing roll has an essential impact on runway throughput and thus on airport capacity. For this purpose, the landing roll simulator (named ACPENSIM) was created. It uses Petri nets and is a convenient tool for dynamic analysis of aircraft movement on the runway with given input parameters and a predetermined runway exit. Simulation experiments allowed to create a set of nominal braking profiles that have different objective functions: minimizing the runway occupancy time, minimizing noise, minimizing tire wear, maximizing passenger comfort and maximizing airport capacity as a whole. The experiments show that there is great potential to increase airport capacity by optimizing the braking procedure. It has been shown that by using the proposed braking profiles it is possible to reduce the runway occupancy time even by 50%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号