首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合运输   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This work deals with a facility location problem in which location and allocation (transportation) policy is defined in two stages such that a first-stage solution should be robust against the possible realizations (scenarios) of the input data that can only be revealed in a second stage. This solution should be robust enough so that it can be recovered promptly and at low cost in the second stage. In contrast to some related modeling approaches from the literature, this new recoverable robust model is more general in terms of the considered data uncertainty; it can address situations in which uncertainty may be present in any of the following four categories: provider-side uncertainty, receiver-side uncertainty, uncertainty in-between, and uncertainty with respect to the cost parameters.For this novel problem, a sophisticated branch-and-cut framework based on Benders decomposition is designed and complemented by several non-trivial enhancements, including scenario sorting, dual lifting, branching priorities, matheuristics and zero-half cuts. Two large sets of instances that incorporate spatial and demographic information of countries such as Germany and US (transportation) and Bangladesh and the Philippines (disaster management) are introduced. They are used to analyze in detail the characteristics of the proposed model and the obtained solutions as well as the effectiveness, behavior and limitations of the designed algorithm.  相似文献   
2.
Dial-a-ride problems are concerned with the design of efficient vehicle routes for transporting individual persons from specific origin to specific destination locations. In real-life this operational planning problem is often complicated by several factors. Users may have special requirements (e.g. to be transported in a wheelchair) while service providers operate a heterogeneous fleet of vehicles from multiple depots in their service area. In this paper, a general dial-a-ride problem in which these three real-life aspects may simultaneously be taken into account is introduced: the Multi-Depot Heterogeneous Dial-A-Ride Problem (MD-H-DARP). Both a three- and two-index formulation are discussed. A branch-and-cut algorithm for the standard dial-a-ride problem is adapted to exactly solve small problem instances of the MD-H-DARP. To be able to solve larger problem instances, a new deterministic annealing meta-heuristic is proposed. Extensive numerical experiments are presented on different sets of benchmark instances for the homogeneous and the heterogeneous single depot dial-a-ride problem. Instances for the MD-H-DARP are introduced as well. The branch-and-cut algorithm provides considerably better results than an existing algorithm which uses a less compact formulation. All seven previously unsolved benchmark instances for the heterogeneous dial-a-ride problem could be solved to optimality within a matter of seconds. While computation times of the exact algorithm increase drastically with problem size, the proposed meta-heuristic algorithm provides near-optimal solutions within limited computation time for all instances. Several best known solutions for unsolved instances are improved and the algorithm clearly outperforms current state-of-the-art heuristics for the homogeneous and heterogeneous dial-a-ride problem, both in terms of solution quality and computation time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号