首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   5篇
公路运输   20篇
综合类   32篇
水路运输   4篇
铁路运输   12篇
综合运输   40篇
  2021年   7篇
  2020年   5篇
  2018年   9篇
  2017年   6篇
  2016年   8篇
  2015年   4篇
  2014年   12篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有108条查询结果,搜索用时 234 毫秒
1.
A novel multiclass macroscopic model is proposed in this article. In order to enhance first-in, first-out property (FIFO) and transmission function in the multiclass traffic modeling, a new multiclass cell transmission model with FIFO property (herein called FM-CTM) is extended from its prior multiclass cell transmission model (M-CTM). Also, to enhance its analytical compactness and resultant computational convenience, FM-CTM is formulated in this paper as a set of closed-form matrix equations. The objective is to improve the accuracy of traffic state estimation by enforcing FIFO property when a fast vehicle cannot overtake a slow vehicle due to a limitation of a single-lane road. Moreover, the proposed model takes into account a different priority for vehicles of each class to move forward through congested road conditions, and that makes the flow calculation independent from their free-flow speeds. Some hypothetical and real-world freeway networks with a constant or varying number of lanes are selected to verify FM-CTM by comparing with M-CTM and the conventional CTM. Observed densities of VISSIM and real-world dataset of I-80 are selected to compare with the simulated densities from the three CTMs. The numerical results show that FM-CTM outperforms the other two models by 15% of accuracy measures in most cases. Therefore, the proposed model is expected to be well applicable to the road network with a mixed traffic and varying number of lanes.  相似文献   
2.
The present paper describes how to use coordination between neighbouring intersections in order to improve the performance of urban traffic controllers. Both the local MPC (LMPC) introduced in the companion paper (Hao et al., 2018) and the coordinated MPC (CMPC) introduced in this paper use the urban cell transmission model (UCTM) (Hao et al., 2018) in order to predict the average delay of vehicles in the upstream links of each intersection, for different scenarios of switching times of the traffic lights at that intersection. The feedback controller selects the next switching times of the traffic light corresponding to the shortest predicted average delay. While the local MPC (Hao et al., 2018) only uses local measurements of traffic in the links connected to the intersection in comparing the performance of different scenarios, the CMPC approach improves the accuracy of the performance predictions by allowing a control agent to exchange information about planned switching times with control agents at all neighbouring intersections. Compared to local MPC the offline information on average flow rates from neighbouring intersections is replaced in coordinated MPC by additional online information on when the neighbouring intersections plan to send vehicles to the intersection under control. To achieve good coordination planned switching times should not change too often, hence a cost for changing planned schedules from one decision time to the next decision time is added to the cost function. In order to improve the stability properties of CMPC a prediction of the sum of squared queue sizes is used whenever some downstream queues of an intersection become too long. Only scenarios that decrease this sum of squares of local queues are considered for possible implementation. This stabilization criterion is shown experimentally to further improve the performance of our controller. In particular it leads to a significant reduction of the queues that build up at the edges of the traffic region under control. We compare via simulation the average delay of vehicles travelling on a simple 4 by 4 Manhattan grid, for traffic lights with pre-timed control, traffic lights using the local MPC controller (Hao et al., 2018), and coordinated MPC (with and without the stabilizing condition). These simulations show that the proposed CMPC achieves a significant reduction in delay for different traffic conditions in comparison to these other strategies.  相似文献   
3.
Traffic metering offers great potential to reduce congestion and enhance network performance in oversaturated urban street networks. This paper presents an optimization program for dynamic traffic metering in urban street networks based on the Cell Transmission Model (CTM). We have formulated the problem as a Mixed-Integer Linear Program (MILP) capable of metering traffic at network gates with given signal timing parameters at signalized intersections. Due to the complexities of the MILP model, we have developed a novel and efficient solution approach that solves the problem by converting the MILP to a linear program and several CTM simulation runs. The solution algorithm is applied to two case studies under different conditions. The proposed solution technique finds solutions that have a maximum gap of 1% of the true optimal solution and guarantee the maximum throughput by keeping some vehicles at network gates and only allowing enough vehicles to enter the network to prevent gridlocks. This is confirmed by comparing the case studies with and without traffic metering. The results in an adapted real-world case study network show that traffic metering can increase network throughput by 4.9–38.9% and enhance network performance.  相似文献   
4.
驾驶过程中使用手机的行为存在安全隐患,是当今导致交通安全事故的原因之一。文章借助于信息技术开发出采集使用手机行为数据的App,从真实数据出发,客观地分析驾驶员在开车过程中使用手机这一不良驾驶行为的覆盖程度及危险程度,并提出将手机使用行为作为驾驶风险评价因子。  相似文献   
5.
In a variety of applications of traffic flow, including traffic simulation, real-time estimation and prediction, one requires a probabilistic model of traffic flow. The usual approach to constructing such models involves the addition of random noise terms to deterministic equations, which could lead to negative traffic densities and mean dynamics that are inconsistent with the original deterministic dynamics. This paper offers a new stochastic model of traffic flow that addresses these issues. The source of randomness in the proposed model is the uncertainty inherent in driver gap choice, which is represented by random state dependent vehicle time headways. A wide range of time headway distributions is allowed. From the random time headways, counting processes are defined, which represent cumulative flows across cell boundaries in a discrete space and continuous time conservation framework. We show that our construction implicitly ensures non-negativity of traffic densities and that the fluid limit of the stochastic model is consistent with cell transmission model (CTM) based deterministic dynamics.  相似文献   
6.
Mobile ICTs and physical mobility: Review and research agenda   总被引:1,自引:0,他引:1  
The question of the relationship between the spread of communication tools and the physical mobility of individuals is not new and arose with the arrival of the fixed telephone and, more recently, the development of the Internet and especially e-commerce. The extraordinary spread of individual, especially portable, communication tools like the mobile phone, has recently generated new interest in this topic in the fields of transportation economics, geography and sociology. This article discusses the main topics that have been explored, from the debate between complementarity and substitution to analyses in terms of interactions with the spatiotemporal organization of daily activities, the size and maintenance of social networks, and, finally, perception of travel and spaces. We then identify several issues that we think merit further exploration.  相似文献   
7.
交通需求分析和预测是城市轨道交通规划的重要依据,然而宏观交通模型的复杂性、数据质量及规划变更等问题容易导致轨道交通客流预测的不确定性。为弥补交通需求和客流预测的不确定性,以石家庄市为例,利用手机大数据从职住分布、职住平衡、出行需求、通勤圈等四个维度剖析城市特征,从城市特征刻画、现状模型校核、发展趋势研判等方面与需求预测模型优势互补,并与巴黎大区横向对标分析,借鉴巴黎大区轨道交通规划和发展的经验,从规划策略层面为城市轨道交通规划提供支撑。  相似文献   
8.
Several transportation problems, such as implementation of truck-only lanes, require understanding the interaction of heterogeneous dynamic traffic flows in order to provide accurate solutions. System-optimal dynamic traffic assignment can be modeled using a network loading procedure based on the cell transmission model, that is, the hydrodynamic wave model, and solved by linear programming. However, this framework cannot handle the asymmetric integration between the flow of trucks and cars. This article presents a novel formulation for network loading in system-optimal dynamic traffic assignment considering car–truck interactions. By using an embedded cell transmission model, this formulation incorporates a set of assumptions related to the kinematic characteristics of the flow of cars, trucks, and their interactions that can be solved using linear programming. We present numerical results supporting our modeling assumptions. Likewise, the observed emergent behavior captures the car–truck interactions accurately and indicates that minimum system-optimal travel time is obtained by encouraging cars to use highways with shorter distances.  相似文献   
9.
On July 1st, 2008, California enacted a ban on hand-held cell phone use while driving. Using California Highway Patrol panel accident data for California freeways from January 1st, 2008 to December 31st, 2008, we examine whether this policy reduced the number of accidents on California highways. To control for unobserved time-varying effects that could be correlated with the ban, we use high-frequency data and a regression discontinuity design. We find no evidence that the ban on hand-held cell phone use led to a reduction in traffic accidents.  相似文献   
10.
The use of mobile phones while driving—one of the most common driver distractions—has been a significant research interest during the most recent decade. While there has been a considerable amount research and excellent reviews on how mobile phone distractions influence various aspects of driving performance, the mechanisms by which the interactions with mobile phone affect driver performance is relatively unexamined. As such, the aim of this study is to examine the mechanisms involved with mobile phone distractions such as conversing, texting, and reading and the driving task, and subsequent outcomes. A novel human-machine framework is proposed to isolate the components and various interactions associated with mobile phone distracted driving. The proposed framework specifies the impacts of mobile phone distraction as an inter-related system of outcomes such as speed selection, lane deviations and crashes; human-car controls such as steering control and brake pedal use and human-environment interactions such as visual scanning and navigation. Eleven literature-review/meta-analyses papers and 62 recent research articles from 2005 to 2015 are critically reviewed and synthesised following a systematic classification scheme derived from the human-machine system framework. The analysis shows that while many studies have attempted to measure system outcomes or driving performance, research on how drivers interactively manage in-vehicle secondary tasks and adapt their driving behaviour while distracted is scant. A systematic approach may bolster efforts to examine comprehensively the performance of distracted drivers and their impact over the transportation system by considering all system components and interactions of drivers with mobile phones and vehicles. The proposed human-machine framework not only contributes to the literature on mobile phone distraction and safety, but also assists in identifying the research needs and promising strategies for mitigating mobile phone-related safety issues. Technology based countermeasures that can provide real-time feedback or alerts to drivers based on eye/head movements in conjunction with vehicle dynamics should be an important research direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号