首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   0篇
公路运输   23篇
综合类   27篇
水路运输   29篇
铁路运输   7篇
综合运输   42篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   16篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   2篇
  2014年   8篇
  2013年   13篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
排序方式: 共有128条查询结果,搜索用时 312 毫秒
1.
In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses.In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO2eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO2eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO2 are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle.In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO2eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO2eq intensity is also low in this period, but midday charging leads to the largest savings in CO2eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO2eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.  相似文献   
2.
Lamble  Dave  Rajalin  Sirpa  Summala  Heikki 《Transportation》2002,29(3):223-236
This paper reviews two road-user surveys on the use of mobile phones on the road in Finland where the mobile phone ownership rate is highest in the world (70% in August 2000). From 1998 to 1999 the proportion of drivers that chose to use a mobile phone while driving rose from 56% to 68%, while the proportion of phone using drivers who experienced dangerous situations due to phone use rose from 44% to 50%. The proportion of drivers who used their phones in some way to benefit safety on the road remained at about 55%. The youngest, novice drivers had the highest level of phone usage of all age categories. Over 48% of the interviewees believed that the government should ban the use of hand-held mobile phones while driving, and another 27% believed that all types of mobile phone use should be banned while driving. Those drivers who used their phones the most each day were more likely to want some form of restrictions, than those who had lower usage. This is a strong message to the elected lawmakers and raises the problem of exactly how regulatory bodies would go about controlling the future growth of new driver support and non-driving related communication devices in road vehicles. It was concluded that legislating for hands-free use only would be a reasonable course of action. Mandating that the current generation of equipment should be optimized for hands-free use should result in future generations of in-vehicle equipment also being optimized for hands-free use as a minimum criterion.  相似文献   
3.
李勤昌 《世界海运》2002,25(5):30-31
通过提单的历史演变及有关立法及业务实际程序考察,论述提单的运输合同属性,更正有关立法的误会。  相似文献   
4.
This study explores how battery electric vehicle users choose where to fast-charge their vehicles from a set of charging stations, as well as the distance by which they are generally willing to detour for fast-charging. The focus is on fast-charging events during trips that include just one fast-charge between origin and destination in Kanagawa Prefecture, Japan. Mixed logit models with and without a threshold effect for detour distance are applied to panel data extracted from a two-year field trial on battery electric vehicle usage in Japan. Findings from the mixed logit model with threshold show that private users are generally willing to detour up to about 1750 m on working days and 750 m on non-working days, while the distance is 500 m for commercial users on both working and non-working days. Users in general prefer to charge at stations requiring a shorter detour and use chargers located at gas stations, and are significantly affected by the remaining charge. Commercial users prefer to charge at stations encountered earlier along their paths, while only private users traveling on working days show such preference and they turn to prefer the stations encountered later when choosing a station in peak hours. Only private users traveling on working days show a strong preference for free charging. Commercial users tend to pay for charging at a station within 500 m detour distance. The fast charging station choice behavior is heterogeneous among users. These findings provide a basis for early planning of a public fast charging infrastructure.  相似文献   
5.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power.  相似文献   
6.
Public charging infrastructure represents a key success factor in the promotion of plug-in electric vehicles (PEV). Given that a large initial investment is required for the widespread adoption of PEV, many studies have addressed the location choice problem for charging infrastructure using a priori simple assumptions. Ideally, however, identifying optimal locations of charging stations necessitates an understanding of charging behavior. Limited market penetration of PEV makes it difficult to grasp any regularities in charging behavior. Using a Dutch data set about four-years of charging transactions, this study presents a detailed analysis of inter-charging times. Recognizing that PEV users may exhibit different charging behavior, this study estimates a latent class hazard duration model, which accommodates duration dependence, unobserved heterogeneity and the effects of time-varying covariates. PEV users are endogenously classified into regular and random users by treating charging regularity as a latent variable. The paper provides valuable insights into the dynamics of charging behavior at public charging stations, and which strategies can be successfully used to improve the performance of public charging infrastructure.  相似文献   
7.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   
8.
The aim of the German Government is the licensing of one million electric vehicles (EV) in Germany until 2020. However, the number of battery electric vehicles (EVs) today still is just above 25,000. There are several reasons for deciding against an EV, but especially low battery ranges as well as too long perceived charging duration inhibit the usage of an EV. To eliminate the negative influence of these two reasons on the decision to purchase an EV, a novel charging technology is established. The rapid-charging technology enables the user to recharge the battery to 80% of its state of charge (SOC) within 20–30 min. For the examination of the technology’s impact from (potential) user’s perspective, users and nonusers of battery electric vehicles were questioned about the perceived additional value of public rapid-charging infrastructure by taking into account different trip purposes and running comparisons to regular charging options. The results show an increased perceived value especially for trips with leisure purpose, considering their share of all trip purposes in Germany, according to the MiD 2008. In order to increase the number of licensed EVs in Germany, the study’s results also suggest further dissemination of information on rapid charging which might influence the perceived usefulness of the technology and consequentially the perceived usefulness of an EV.  相似文献   
9.
计算机的广泛使用带动了网上拍卖的蓬勃兴起,给传统的拍卖带来了前所未有的冲击,而有关网上拍卖的法律体系尚未建立,因而出现了许多法律适用上的问题。本文将从网上拍卖的涵义特征入手,结合国内外网上拍卖的现状和立法,针对网上拍卖出现的问题,寻求可能的解决途径。  相似文献   
10.
随着新能源汽车行业快速发展,电动汽车充电功能及安全问题受到广泛关注。结合新能源汽车充电大数据可视化系统,从用户类型、车辆类型、充电方式、地域分布维度进行交叉分析,洞察用户充电行为统计分布规律;通过数据分析驱动充电安全设计,并结合数据资源和大数据分析技术,挖掘数据背后蕴藏的丰富价值,以改善当前新能源汽车充电问题和促进新能源汽车产业发展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号