首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
水路运输   1篇
综合运输   3篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
This paper transfers the classic frequency-based transit assignment method of Spiess and Florian to containers demonstrating its promise as the basis for a global maritime container assignment model. In this model, containers are carried by shipping lines operating strings (or port rotations) with given service frequencies. An origin–destination matrix of full containers is assigned to these strings to minimize sailing time plus container dwell time at the origin port and any intermediate transhipment ports. This necessitated two significant model extensions. The first involves the repositioning of empty containers so that a net outflow of full containers from any port is balanced by a net inflow of empty containers, and vice versa. As with full containers, empty containers are repositioned to minimize the sum of sailing and dwell time, with a facility to discount the dwell time of empty containers in recognition of the absence of inventory. The second involves the inclusion of an upper limit to the maximum number of container moves per unit time at any port. The dual variable for this constraint provides a shadow price, or surcharge, for loading or unloading a container at a congested port. Insight into the interpretation of the dual variables is given by proposition and proof. Model behaviour is illustrated by a simple numerical example. The paper concludes by considering the next steps toward realising a container assignment model that can, amongst other things, support the assessment of supply chain vulnerability to maritime disruptions.  相似文献   
2.
The objective of the research described in this paper was to develop a model for computation of an ultimate capacity of a single track line and to provide a sensitivity analysis of this capacity to the parameters which influence it. The model is based in a concept of mathematical expectation of capacity and can be applied under saturation conditions i.e. a constant demand for service. It can serve for planning purposes, computation of single track line capacity on the base of which estimations are possible concerning a single track line performance under given conditions, as well as commercial time‐tables planning, decisions about a partial or complete construction of the second parallel track along the line in service, intermediate stations locations planning and the necessary facilities along the line under construction.

In the sensitivity analysis, the model allows a change of parameters upon which the capacity depends. These are: the length of the line segment which is considered to be bottleneck for calculation of capacity, traffic distributions per directions, train mix, train velocities and train spacing rules applied by the dispatching service when regulating the traffic on a line.  相似文献   
3.
Increasing stack heights on container ships and growing volumes of high density cargo have increased the loads and stresses placed on containers, requiring an assessment of current container strength specifications. Growing adoption of terminal automation is also requiring greater standardisation in the codification and marking of containers. However, it is shown that there is widespread misunderstanding of the roles of the IMO and the ISO in regulating and promoting standards in the design, dimensions, ratings, coding, marking and strength of containers. In this paper the legal status of the IMO’s Convention for Safe Containers (CSC) and ISO standards is clarified, and a common container specification framework is developed to assess the extent to which international regulations and standards are aligned. The analysis identifies gaps and inconsistencies between regulations and standards and assesses the impact these have on operations and safety. The study highlights to policy makers anomalies arising from the recent inclusion in the CSC of direct references to ISO standards. Finally, in providing a comprehensive definition of container specifications the paper provides a knowledge base to promote theory building for applied researchers in the field of container technology and operations.  相似文献   
4.
Increase of congestion at container deep seaports and shortage of capacity has led inland transport systems worldwide to rely more and more on inland terminals, and on the use of high capacity modes of transport to generate economies of scale and reduce negative effects of trucking. In this setting, planning the transport of maritime containers between a deep seaport and a final inland destination must also consider due dates and soft time windows, the latter known as Demurrage and Detention (D&D). In this paper, we formalize the concept of D&D, model the multimodal planning problem, and assess the impact of different D&D regimes on the emerging inland transport systems. By means of an experimental framework, we compare different D&D policies and provide managerial insights. The experiments highlight the effects of existing D&D regimes on transport efficiency and provide guidelines for their choice in practice. D&D are shown to have a twofold effect: first to limit consolidation opportunities and force the use of trucks as buffer, and second to push containers to dwell unnecessarily at the seaports.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号