首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
公路运输   1篇
综合运输   4篇
  2022年   1篇
  2018年   1篇
  2015年   2篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
为实现人机共驾模式下智能系统对驾驶人换道决策的准确识别,将换道决策细分并提出了基于改进的极端梯度提升(XGBoost)的换道决策识别模型。以实车试验采集的自然驾驶数据作为输入,并采用滑动时间窗法确定识别时刻,建立各识别时间窗口下基于XGBoost的换道决策识别模型,同时运用交叉检验和网格搜索(GS)算法进一步提升模型性能,最后利用验证集数据评估所构建GS-XGBoost模型的识别性能,并与机器学习及深度学习模型进行对比。结果表明,所提出的模型在具体换道决策辨识上具有较好的实时性和准确性,且在1.8 s和1.6 s时间窗下的识别准确率最高,达到86.2%。  相似文献   
2.
In this paper we identify the origins of stop-and-go (or slow-and-go) driving and measure microscopic features of their propagations by analyzing vehicle trajectories via Wavelet Transform. Based on 53 oscillation cases analyzed, we find that oscillations can be originated by either lane-changing maneuvers (LCMs) or car-following (CF) behavior. LCMs were predominantly responsible for oscillation formations in the absence of considerable horizontal or vertical curves, whereas oscillations formed spontaneously near roadside work on an uphill segment. Regardless of the trigger, the features of oscillation propagations were similar in terms of propagation speed, oscillation duration, and amplitude. All observed cases initially exhibited a precursor phase, in which slow-and-go motions were localized. Some of them eventually transitioned into a well-developed phase, in which oscillations propagated upstream in queue. LCMs were primarily responsible for the transition, although some transitions occurred without LCMs. Our findings also suggest that an oscillation has a regressive effect on car-following behavior: a deceleration wave of an oscillation affects a timid driver (characterized by larger response time and/or minimum spacing) to become less timid and an aggressive driver less aggressive, although this change may be short-lived. An extended framework of Newell’s CF model is able to describe the regressive effect with two additional parameters with reasonable accuracy, as verified using vehicle trajectory data.  相似文献   
3.
Vehicle-to-Vehicle communications provide the opportunity to create an internet of cars through the recent advances in communication technologies, processing power, and sensing technologies. A connected vehicle receives real-time information from surrounding vehicles; such information can improve drivers’ awareness about their surrounding traffic condition and lead to safer and more efficient driving maneuvers. Lane-changing behavior, as one of the most challenging driving maneuvers to understand and to predict, and a major source of congestion and collisions, can benefit from this additional information. This paper presents a lane-changing model based on a game-theoretical approach that endogenously accounts for the flow of information in a connected vehicular environment. A calibration approach based on the method of simulated moments is presented and a simplified version of the proposed framework is calibrated against NGSIM data. The prediction capability of the simplified model is validated. It is concluded the presented framework is capable of predicting lane-changing behavior with limitations that still need to be addressed. Finally, a simulation framework based on the fictitious play is proposed. The simulation results revealed that the presented lane-changing model provides a greater level of realism than a basic gap-acceptance model.  相似文献   
4.
This paper focuses on the lane-changing trajectory planning (LTP) process in the automatic driving technologies. Existing studies on the LTP algorithms are primarily the static planning method in which the states of the surrounding vehicles of a lane-changing vehicle are assumed to keep unchanged in the whole lane-changing process. However, in real-world traffic, the velocities of the surrounding vehicles change dynamically, and the lane-changing vehicle needs to adjust its velocity and positions correspondingly in real-time to maintain safety. To address such limitations, the dynamic lane-changing trajectory planning (DLTP) model is proposed in the limited literature. This paper proposes a novel DLTP model consisting of the lane-changing starting-point determination module, trajectory decision module and trajectory generation module. The model adopts a time-independent polynomial trajectory curve to avoid the unrealistic assumptions on lane-changing velocities and accelerations in the existing DLTP model. Moreover, a rollover-avoidance algorithm and a collision-avoidance algorithm containing a reaction time are presented to guarantee the lane-changing safety of automated vehicles, even in an emergent braking situation. The field lane-changing data from NGSIM data are used to construct a real traffic environment for lane-changing vehicles and verify the effectiveness of the proposed model, and CarSim is applied to investigate the traceability of the planned lane-changing trajectories using the proposed model. The results indicate that an automated vehicle can complete the lane-changing process smoothly, efficiently and safely following the trajectory planned by the proposed model, and the planned velocity and trajectory can be well-tracked by automated vehicles.  相似文献   
5.
This paper shows that the behavior of driver models, either individually or entangled in stochastic traffic simulation, is affected by the accuracy of empirical vehicle trajectories. To this aim, a “traffic-informed” methodology is proposed to restore physical and platoon integrity of trajectories in a finite time–space domain, and it is applied to one NGSIM I80 dataset. However, as the actual trajectories are unknown, it is not possible to verify directly whether the reconstructed trajectories are really “nearer” to the actual unknowns than the original measurements. Therefore, a simulation-based validation framework is proposed, that is also able to verify indirectly the efficacy of the reconstruction methodology. The framework exploits the main feature of NGSIM-like data that is the concurrent view of individual driving behaviors and emerging macroscopic traffic patterns. It allows showing that, at the scale of individual models, the accuracy of trajectories affects the distribution and the correlation structure of lane-changing model parameters (i.e. drivers heterogeneity), while it has very little impact on car-following calibration. At the scale of traffic simulation, when models interact in trace-driven simulation of the I80 scenario (multi-lane heterogeneous traffic), their ability to reproduce the observed macroscopic congested patterns is sensibly higher when model parameters from reconstructed trajectories are applied. These results are mainly due to lane changing, and are also the sought indirect validation of the proposed data reconstruction methodology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号