首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
公路运输   1篇
综合运输   5篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This work addresses the formation phase of automatic platooning. The objective is to optimally control the throttle of vehicles, with a given arbitrary initial condition, such that desired ground speed and inter-vehicular spacings are reached. The steering of the vehicles is also controlled, because the vehicles should track a desired path while forming the platoon. In order to address the platoon formation problem, a cooperative strategy is formed by constructing a discrete state space model which represents the dynamics of a set of n vehicles. Once this model is set, a control method known as Interpolating Control, which aims at regulating to the origin an uncertain and/or time-varying linear discrete-time system with state and control constraints, is utilized. The performance of this control method is evaluated and compared with other approaches such as Model Predictive Control (MPC).Simulations are conducted which suggest that the Interpolating Control approach can be seen as an alternative to optimization-based control schemes such as Model Predictive Control, especially for problems for which finding the optimal solution requires calculations, where the Interpolating Control approach can provide a straightforward sub-optimal solution.In the experimental part of this work, the control algorithms for the platoon formation and path tracking problems are combined, and tested in a laboratory environment, using three mobile robots equipped with wireless routers. Validation of the proposed models and control algorithms is achieved by successful experiments.  相似文献   
2.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles.  相似文献   
3.
为了研究车辆前后间距和车辆数目对智能交通系统中队列行驶车辆气动特性的影响,首先对单辆车进行数值模拟,并将模拟结果与风洞试验结果进行对比,然后对两辆车在5种不同间距下以及3~7辆车在固定间距下队列行驶的情况分别进行了数值模拟及分析。研究表明:单辆车数值模拟结果与风洞试验结果基本吻合。队列行驶车辆随着车辆间距的减小,各车阻力系数不断降低。在固定间距下,随着队列中车辆数目的增加,平均阻力系数可降低20%~30%,阻力最低的车大致处于车队的中心位置。  相似文献   
4.
This paper aims to investigate the application of meta-heuristic optimisation methods to Network Signal Setting Design. The adopted approaches are (i) three step optimisation, in which first the stage matrix (stage composition and sequence), the green timings at each single junction are optimised, then the node offsets are computed in three successive steps; (ii) two step optimisation, in which the stage matrix is defined at a first step, then the green timings and the node offsets are computed at a second step. In both approaches the stage matrix optimisation is carried out through explicit complete enumeration.In the first approach multi-criteria optimisation is followed for single junction signal setting design (green timings), whilst the coordination (node offsets) is approached through mono-criterion optimisation, as well as for the synchronisation (green timings and offsets) in the second approach.A new traffic flow model mixing CTM and PDM has been applied. This model allows to explicitly represent horizontal queuing phenomena as well as dispersion along a link. Some meta-heuristic algorithms (i.e. Genetic Algorithms, Hill Climbing and Simulated Annealing) are investigated in order to solve the two problems.The proposed strategies are applied to two different layouts (a two junction arterial vs. a four junction network) and their effectiveness is evaluated by comparing the obtained results with those from benchmark approaches implementing mono-criterion optimisation only.  相似文献   
5.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   
6.
This paper proposes nonlinear consensus-based control strategies for a connected vehicle (CV) platoon under different communication topologies. In particular, pinning control based consensus protocols are proposed by incorporating the car-following interactions between CVs under fixed and switching communication topologies. The finite-time stability and consensus of the proposed protocols are rigorously analyzed using the LaSalle’s invariance principle and Lyapunov technique. The theoretical analyses investigate the impacts of communication topology on convergence and stability of CV platoon. This study conducts numerical experiments for a CV platoon under four scenarios: (i) Fixed communication topology with time-invariant leader, (ii) fixed communication topology with time-variant leader, (iii) switching communication topology with time-invariant leader, and (iv) switching communication topology with time-variant leader. Simulations results illustrate the effectiveness of the proposed protocols in terms of convergence time and stability with respect to position and velocity profiles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号