首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合运输   2篇
  2016年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Uncertainty of outcome is widely recognised as a concern facing decision-makers and their advisors. In a number of spheres of policy, it appears uncertainty has intensified in the face of globalisation, economic instability, climate change, technological innovation and changing consumer preferences. How can planners and policymakers plan for an uncertain future? There is growing interest in, and use of, techniques that can help decision-making processes where deep uncertainty is involved. This paper is based upon one of the most recent international examples of a foresight exercise employed to examine uncertainty – specifically that which concerns uncertainty over the nature and extent of future demand for car travel. The principal focus of the paper is on the insights and guidance this examination of uncertainty brings forth for transport planning and policymaking. To accommodate deep uncertainty requires a flexible and open approach in terms of how policy and investment possibilities are formulated and judged. The paper argues for a focus upon the Triple Access System of spatial proximity, physical mobility and digital connectivity as a framework for policy and investment decisions that can harness flexibility and resilience. Uncertainty becomes an opportunity for decision-makers with the realisation that they are shaping the future rather than (only) responding to a predicted future. The paper outlines two forms of policymaking pathway: regime-compliant (in which adherence to trends and the nature of the world we have known pushes policy) and regime-testing (in which the nature of the world as we have known it is brought into question and vision pulls policy decisions). Stronger orientation towards regime-testing to assist in managing an uncertain future is advocated.  相似文献   
2.
As decision-makers increasingly embrace life-cycle assessment (LCA) and target transportation services for regional environmental goals, it becomes imperative that outcomes from changes to transportation infrastructure systems are accurately estimated. Greenhouse gas (GHG) reduction policies have created interest in better understanding how public transit systems reduce emissions. Yet the use of average emission factors (e.g., grams CO2e per distance traveled) persists as the state-of-the-art masking the variations in emissions across time, and confounding the ability to accurately estimate the environmental effects from changes to transit infrastructure and travel behavior. An LCA is developed of the Expo light rail line and a competing car trip (in Los Angeles, California) that includes vehicle, infrastructure, and energy production processes, in addition to propulsion. When results are normalized per passenger kilometer traveled (PKT), life-cycle processes increase energy use and GHG emissions up to 83%, and up to 690% for smog and respiratory impact potentials. However, the use of a time-independent PKT normalization obfuscates a decision-maker’s ability to understand whether the deployment of a transit system reduces emissions below a future year policy target (e.g., 80% of 1990 emissions by 2050). The year-by-year marginal effects of the decision to deploy the Expo line are developed including reductions in automobile travel. The time-based marginal results provide clearer explanations for how environmental effects in a region change and the critical life-cycle processes that should be targeted to achieve policy targets. It shows when environmental impacts payback and how much reduction is achieved by a policy-specified future year.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号