首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合运输   2篇
  2016年   1篇
  2015年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Since transportation projects are costly and resources are limited, prioritizing or sequencing the projects is imperative. This study was inspired by a client who asked: “I have tens of approved road extension projects, but my financial resources are limited. I cannot construct all the projects simultaneously, so can you help me prioritize my projects?” To address this question, the benefits and costs of all the possible scenarios must be known. However, the impacts (or benefit) of road extension projects are highly interdependent, and in sizable cases cannot be specified thoroughly. We demonstrate that the problem is analogous to the Traveling Salesman Problem (TSP). Dynamic change in travel demand during construction is another aspect of the complexity of the problem. The literature is yet to provide efficient methods for large cases. To this end, we developed a heuristic methodology in which the variation of travel demand during the construction period is considered. We introduce a geometrical objective function for which a solution-finding policy based on “gradient maximization” is developed. To address the projects’ interdependency, a special neural network (NN) model was devised. We developed a search engine hybridized of Ant Colony and Genetic Algorithm to seek a solution to the TSP-like problem on the NN based on gradient maximization. The algorithm was calibrated and applied to real data from the city of Winnipeg, Canada, as well as two cases based on Sioux-Falls. The results were reliable and identification of the optimum solution was achievable within acceptable computational time.  相似文献   
2.
Road segmentation is one of the most important steps in identification of high accident-proneness segments of a road. Based on the ratio of the Potential to Safety Improvement (PSI) along the road, the objective of the paper is to propose a novel dynamic road segmentation model. According to the fundamental model assumption, the determined segments must have the same pattern of PSI. Experimental results obtained from implementation of the proposed method took four Performance Measures (PMs) into consideration; namely, Crash Frequency, Crash Rate, Equivalent Property Damage Only, and Expected Average Crash Frequency with Empirical Bayes adjustment into the accident data obtained from Highway 37 located between two cities in Iran. Results indicated the low sensitivity of the method to PMs. In comparison with the real high accident-proneness segments, identified High Crash Road Segments (HCRS) obtained from the model, demonstrated the potential of the method to recognize the position and length of high accident-proneness segments accurately. Based on the road repair and maintenance costs limitation index for safety improvement, in an attempt to compare the proposed method of road segmentation with conventional ones, results demonstrated the efficient performance of the proposed method. So as to identify 20 percent HCRS located on a read, the proposed method showed an improvement of 38 and 57 percent in comparison with the best and worst outcomes derived from conventional road segmentation methods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号