首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合运输   4篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   
2.
This study presents the characteristics of real world, real time, on-road vehicular exhaust emission namely, carbon monoxide (CO), nitric oxide (NO), hydrocarbons (HC), and carbon dioxide (CO2) emitted under heterogeneous traffic conditions. Field experiments were performed on major category of vehicles in developing countries, i.e. two-wheelers, auto-rickshaws, cars and buses. The on-board monitoring was carried out on different corridors with varying road geometry. Results revealed that the driving cycle was dependent on the road geometry, with two lane mixed flow corridor having lot of short term events compared to that of arterial road. Vehicular emissions during idling and cruising were generally low compared to emissions during acceleration. It was also found that emissions were significantly dependent on short term events such as rapid acceleration and braking during a trip. Also, the standard emission models like COPERT and CMEM under predicted the real world emissions by 30–200% depending upon different driving modes. The on-road emissions measurements were able to capture the emission characteristics during the micro events of real world driving scenarios which were not represented by standard vehicle emission measured at laboratory conditions.  相似文献   
3.
On-road vehicle tests of three heavy duty diesel trucks were conducted by a portable emission measurement system (PEMS) in Chengdu, China. SEMTECH-ECOSTAR provided by Sensors Inc. was employed to detect gaseous emissions and MI2, an emissions measuring instrument powered by the Pegasor Particulate Sensor (PPS) was used to detect particulate emissions during the tests. The impacts of speed, acceleration and engine load on emissions were analyzed. The average nitrogen oxides (NOx) emission factors of the heavy duty diesel truck (HDDT), medium-duty diesel truck (MDDT), light duty diesel truck (LDDT) were 7.29, 5.29 and 5.53 g/km. The particulate emission factors were 0.60, 0.30 and 0.14 g/km respectively, higher than the similar reported in the previous studies. Both gaseous and particulate emission exhibit significant correlations with the change in vehicle speed, acceleration and power demand. The highest emission was generally in high VSPs and higher loads. High engine load caused by aggressive driving was the main factor of high emissions for the vehicles on real-world conditions.  相似文献   
4.
Electric freight vehicles have the potential to mitigate local urban road freight transport emissions, but their numbers are still insignificant. Logistics companies often consider electric vehicles as too costly compared to vehicles powered by combustion engines. Research within the body of the current literature suggests that increasing the driven mileage can enhance the competitiveness of electric freight vehicles. In this paper we develop a numeric simulation approach to analyze the cost-optimal balance between a high utilization of medium-duty electric vehicles – which often have low operational costs – and the common requirement that their batteries will need expensive replacements. Our work relies on empirical findings of the real-world energy consumption from a large German field test with medium-duty electric vehicles. Our results suggest that increasing the range to the technical maximum by intermediate (quick) charging and multi-shift usage is not the most cost-efficient strategy in every case. A low daily mileage is more cost-efficient at high energy prices or consumptions, relative to diesel prices or consumptions, or if the battery is not safeguarded by a long warranty. In practical applications our model may help companies to choose the most suitable electric vehicle for the application purpose or the optimal trip length from a given set of options. For policymakers, our analysis provides insights on the relevant parameters that may either reduce the cost gap at lower daily mileages, or increase the utilization of medium-duty electric vehicles, in order to abate the negative impact of urban road freight transport on the environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号