首页 | 本学科首页   官方微博 | 高级检索  
     

动态交通流量预测方法研究
引用本文:谷远利 余惠华. 动态交通流量预测方法研究[J]. ITS通讯, 2006, 8(1): 36-39
作者姓名:谷远利 余惠华
作者单位:北京交通大学交通运输学院,北京交通大学交通运输学院 北京,100044,北京,100044
摘    要:随着智能运输系统的广泛应用,实时交通流量预测的重要性也日益显著。本文介绍了预测模型发展过程中比较重要的几个模型,并由此引出人工神经网络。介绍误差逆传播(BP)模型的相关理论。指出传统BP神经网络的缺陷,并提出提高预测精度的措施引进高阶神经网络。建立普通BP神经网络的预测模型,利用误差反传播算法实现这些影响因素到输出变量的复杂映射,再用高阶神经网络构建另一预测模型。利用交叉口实测数据进行预测,并用实际数据进行比较验证。

关 键 词:交通流量预测  双隐层BP神经网络  高阶神经网络  智能运输系统

Research on Method of Dynamic Traffic Flow Forecast
Gu Yuanli, Yu Huihua. Research on Method of Dynamic Traffic Flow Forecast[J]. , 2006, 8(1): 36-39
Authors:Gu Yuanli   Yu Huihua
Affiliation:School of Traffic and Transportation, Beijing Jiaotong University, Beijing, 100044
Abstract:With the widely use of the Intelligent Transportation System, the position of the Real-Time Dynamic Traffic Flow Forecast is becoming more and more important. This paper introduces some important models in the development of the forecasting model and brings in the Artificial Neural Network (ANN). Then this paper introduces the correlative theory of the back propagation (BP) model and points out the shortcomings of traditional BP network and some improvements are put forward ring in the High-order Generalized Neural Network. First, construct the neural network forecasting model, with the algorithm of error back propagation, model can reach the complex mapping from these factors to variable output. And then, the other forecasting model is built by High-order Generalized Neural Network (HGNN). Last, with the data of the traffic flow in the intersection, the both kinds of neural network models in real-time traffic flow forecast are run. Then compare the results with the real data.
Keywords:Traffic Flow Forecasting   Double-layers BP Neural Network   High-order Generalized Neural Network   ITS
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号