首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色-广义回归神经网络模型的城市群交通运输能力预测
作者姓名:王亦虹  李雅萱  田平野  罗久刚
作者单位:1. 天津理工大学管理学院
基金项目:国家社会科学基金项目(20BGL220);
摘    要:城市群交通运输能力是构建国家综合立体交通网的战略基石。鉴于传统预测方法难以适应城市群交通运输能力影响因素众多且存在时变、耦合、不确定性强等特征,提出了一种灰色-广义回归神经网络的复合模型,以预测未来城市群交通运输能力。首先,选用LASSO算法筛选主要影响变量来降低数据复杂度,运用GM(1,1)模型弱化数据序列的随机性,预测影响变量时间序列的变化趋势,并填补数据缺失。然后,以2000—2019年京津冀城市群的数据集训练GRNN模型,根据GM(1,1)模型预测出的2020—2025年城市群交通运输能力影响因素,得出未来年份交通运输能力动态趋势。结果表明,复合预测模型精度优于传统方法,有效减少了小样本预测的不确定性。最后,结合预测结果分析了京津冀城市群核心区位城市的发展方向,为助力构建以城市群为重要抓手的新发展格局进行了前瞻性探讨。

关 键 词:交通运输工程  城市群  灰色-广义回归神经网络模型  交通运输能力预测
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号