首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于体积力螺旋桨模型的自航计算方法
引用本文:黄永生, 杨晨俊, 董小倩. 对转桨推进的高速水下航行体实尺度自航计算与分析[J]. 中国舰船研究, 2018, 13(6): 34-42. DOI: 10.19693/j.issn.1673-3185.01118
作者姓名:黄永生  杨晨俊  董小倩
作者单位:1.上海交通大学 海洋工程国家重点实验室, 上海 200240;2.高新船舶与深海开发装备协同创新中心, 上海 200240
基金项目:海洋工程国家重点实验室自主研究课题资助项目(GKZD010068)
摘    要:  目的  为了实现对转桨(CRP)推进的高速水下航行体自航因子的数值预报,  方法  建立实尺度航行体阻力、自航及对转桨敞水的RANS模拟方法,进行阻力和敞水计算精度验证,分别采用准定常和非定常方法进行自航模拟,并对自航因子进行分析和比较。  结果  模型尺度的计算与试验比较表明,航行体阻力计算误差小于3%,对转桨推力、扭矩计算误差分别小于2%和4%;实尺度阻力计算结果与基于模型试验的预报结果相差约3%;实尺度自航计算得到的自航因子值均在合理范围;自航因子的准定常与非定常计算结果之差小于2%,说明准定常方法适合于工程应用。  结论  研究方法可为对转桨设计提供较准确的输入数据,可为提高设计精度、缩短设计周期提供技术支撑。

关 键 词:高速水下航行体  对转桨  自航  实尺度  RANS  计算流体力学
收稿时间:2017-12-07

Computational predictions of ship-speed performance
HUANG Yongsheng, YANG Chenjun, DONG Xiaoqian. Full-scale simulation and analysis of self-propulsion performance of CRP-propelled high speed underwater vehicles[J]. Chinese Journal of Ship Research, 2018, 13(6): 34-42. DOI: 10.19693/j.issn.1673-3185.01118
Authors:HUANG Yongsheng  YANG Chenjun  DONG Xiaoqian
Affiliation:1.State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
Abstract:  Objectives  In order to numerically predict the self-propulsion factors of high speed underwater vehicles equipped with Contra-Rotating Propellers (CRP),  Methods  RANS modeling approaches are developed for vehicle resistance, self-propulsion and CRP open-water simulation. In terms of resistance and open-water performance, the modeling accuracy are validated by comparisons with model experiments. Based on quasi-steady and unsteady simulations of a high speed underwater vehicle at full scale, the self-propulsion factors are analyzed and compared.  Results  The comparison of the numerical and experimental results at the model scale indicates that the simulation error margin of vehicle resistance is less than 3%, while those of CRP thrust and torque are less than 2% and 4% respectively. The numerically simulated full-scale resistance is 3% lower than that predicted by the model test data. The self-propulsion factors yielded from full-scale RANS simulations are all reasonable in magnitude. The self-propulsion factors yielded from the quasi-steady and unsteady models differ by less than 2%, indicating that the quasi-steady model is an economical choice for engineering applications.  Conclusions  The present modeling approaches are capable of supplying self-propulsion factors for CRP design with reasonable accuracy, and are expected to enhance design accuracy and work efficiency.
Keywords:high speed underwater vehicle  Contra-Rotating Propellers (CRP)  self-propulsion  full-scale  RANS  Computational Fluid Dynamics(CFD)
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号