首页 | 本学科首页   官方微博 | 高级检索  
     

基于速度矢量可行度的移动机器人多行为综合决策方法
引用本文:王程博, 张新宇, 张加伟, 刘硕. 未知环境中无人驾驶船舶智能避碰决策方法[J]. 中国舰船研究, 2018, 13(6): 72-77. DOI: 10.19693/j.issn.1673-3185.01144
作者姓名:王程博  张新宇  张加伟  刘硕
作者单位:1.大连海事大学 航海动态仿真与控制交通行业重点实验室, 辽宁 大连 116026;2.大连海事大学 航海学院, 辽宁 大连 116026
基金项目:国家自然科学基金资助项目(51779028)
摘    要:
  目的  为了实现无人驾驶船舶在未知环境下的智能避障功能,  方法  首先,建立一种基于深度强化学习(DRL)技术的无人驾驶船舶智能避碰决策模型,分析无人驾驶船舶智能避碰决策面临的问题,提出智能避碰决策的设计准则。然后,在此基础上,建立基于Markov决策方法(MDP)的智能避碰决策模型,通过值函数求解决策模型中的最优策略,使无人驾驶船舶状态对行为映射中的回报最大,并专门设计由接近目标、偏离航线和安全性组成的激励函数。
最后,分别在静态、动态障碍环境下进行仿真实验。
  结果  结果表明,该智能决策方法可以有效避让障碍物,保障无人驾驶船舶在未知水域中的航行安全,  结论  所提方法可为无人驾驶船舶的自主航行提供理论参考。


关 键 词:无人驾驶船舶  智能决策  深度强化学习  避障
收稿时间:2017-12-29

Multi-behavior integrated-decision method based on feasibility of velocity vectors
WANG Chengbo, ZHANG Xinyu, ZHANG Jiawei, LIU Shuo. Method for intelligent obstacle avoidance decision-making of unmanned vessel in unknown waters[J]. Chinese Journal of Ship Research, 2018, 13(6): 72-77. DOI: 10.19693/j.issn.1673-3185.01144
Authors:WANG Chengbo  ZHANG Xinyu  ZHANG Jiawei  LIU Shuo
Affiliation:1.Key Laboratory of Marine Simulation and Control for Ministry of Communications, Dalian Maritime University, Dalian 116026, China;2.College of Navigation, Dalian Maritime University, Dalian 116026, China
Abstract:
  Objectives  In order to realize intelligent obstacle avoidance of unmanned vessel in unknown waters,  Methods  an intelligent obstacle avoidance decision-making model of the unmanned vessel based on Deep Reinforcement Learning(DRL)is established. Here we analyze the problems encountered in the unmanned vessel's intelligent obstacle avoidance decision-making, propose the design criteria of the intelligent obstacle avoidance decision-making, and then accordingly establish a decision-making model based on Markov Decision Process(MDP), through which obtain the optimal strategy by value function to make the maximum returns in behavior mapping of the unmanned vessel status and to design an excitation function specially composed of target approaching, off course and safety. Finally, carry out the simulation tests respectively in static and dynamic waters.
  Results  The results show that the proposed intelligent decision-making method can effectively avoid obstacles, and ensure the safe navigation of the unmanned vessel in unknown waters.  Conclusions  The proposed method can provide a theoretical reference for autonomous navigation of the unmanned vessel.
Keywords:unmanned vessel  intelligent decision-making  Deep Reinforcement Learning(DRL)  obstacle avoidance
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号