首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distance and time in intermodal goods transport networks in Europe: A generic approach
Authors:Ekki D Kreutzberger  
Institution:aOTB Research Institute for Housing, Urban and Mobility Studies, Delft University of Technology, Jaffalaan 9, P.O. Box 5030, 2600 GA Delft, The Netherlands
Abstract:This paper is about distance and time as factors of competitiveness of intermodal transport. It reviews the relevance of the factors, evaluates time models in practice, compares network distances and times in alternative bundling networks with geometrically varied layouts, and points out how these networks perform in terms of vehicle scale, frequency and door-to-door time. The analysis focuses on intermodal transport in Europe, especially intermodal rail transport, but is in search for generic conclusions. The paper does not incorporate the distance and time results in cost models, and draws conclusions for transport innovation, wherever this is possible without cost modelling. For instance, the feature vehicle scale, an important factor of transport costs, is analysed and discussed.Distance and time are important factors of competitiveness of intermodal transport. They generate (direct) vehicle costs and – via transport quality – indirect costs to the customers. Clearly direct costs/prices are the most important performance of the intermodal transport system. The relevance of quality performances is less clarified. Customers emphasise the importance of a good match between the transport and the logistic system. In this framework (time) reliability is valued high. Often transport time, arrival and departure times, and frequency have a lower priority. But such conclusions can hardy be generalised. The range of valuations reflects the heterogeneity of situations. Some lack of clarity is obviously due to overlapping definitions of different performance types.The following parts of the paper are about two central fields of network design, which have a large impact on transport costs and quality, namely the design of vehicle roundtrips (and acceleration of transport speed) and the choice of bundling type: do vehicles provide direct services or run in what we call complex bundling networks? An example is the hub-and-spoke network. The objective of complex bundling is to increase vehicle scale and/or transport frequency even if network volumes are restricted. Complex bundling requires intermediate nodes for the exchange of load units. Examples of complex bundling networks are the hub-and-spoke network or the line network.Roundtrip and bundling design are interrelated policy fields: an acceleration of the roundtrip speed, often desirable from the cost point of view, can often only be carried out customer friendly, if the transport frequency is increased. But often the flow size is not sufficient for a higher frequency. Then a change of bundling model can be an outcome.Complex bundling networks are known to have longer average distances and times, the latter also due to the presence of additional intermediate exchange nodes. However, this disadvantage is – inside the limits of maximal vehicle sizes – overruled by the advantage of a restricted number of network links. Therefore generally, complex bundling networks have shorter total vehicle distances and times. This expression of economies of scale implies lower vehicle costs per load unit.The last part of the paper presents door-to-door times of load units of complex bundling networks and compares them with unimodal road transport. The times of complex bundling networks are larger than that of networks with direct connections, but nevertheless competitive with unimodal road transport, except for short distances.
Keywords:Transport distance and time  Intermodal networks  Rail  Bundling  Scale of transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号