摘 要: | 为了降低重型车NOx排放速率监测控制中OBD设备异常采集数据和数据耦合问题的影响,基于BP神经网络建立了排放预测模型。为了提高预测模型的准确性,引入了遗传粒子群组合算法,并对其进行动态改进,同时利用PCA分析提取数据特征。结果表明:对比传统遗传算法和粒子群算法,动态改进的遗传粒子群组合算法在适应度函数上提升了5.75%和3.37%;与其他9种预测模型相比,动态改进后的遗传粒子群-BP网络在评价指标MASE、RMSE和R2上表现最优,MASE、RMSE分别为0.024和0.033 6,R2为0.951,预测结果与原始数据基本吻合,所建预测模型具有较高的预测准确性。
|