首页 | 本学科首页   官方微博 | 高级检索  
     

多无人水下航行器协同导航与定位研究
引用本文:张立川,徐德民,刘明雍,严卫生. 多无人水下航行器协同导航与定位研究[J]. 船舶与海洋工程学报, 2009, 8(3): 216-221. DOI: 10.1007/s11804-009-8059-3
作者姓名:张立川  徐德民  刘明雍  严卫生
作者单位:西北工业大学航海学院,陕西,西安,710072;西北工业大学航海学院,陕西,西安,710072;西北工业大学航海学院,陕西,西安,710072;西北工业大学航海学院,陕西,西安,710072
基金项目:the National Natural Science Foundation of China under Grant No.60875071,the High Technology Research and Development Program of China under Grant No.2007AA0676,the Program for New Century Excellent Talents in University under Grant No.NCET-06-0877 
摘    要:提出一种基于移动长基线的多无人水下航行器协同导航与定位方法.多无人水下航行器协同导航与定位方法对于解决大水深和远航程问题至关重要,在移动长基线算法中,主UUV装备高精度导航设备作为移动长基线节点,而从UUv装备低精度导航设备,两者之间通过水声装置米相互定位,利用传统几何关系解算从UUV,位置的算法将产生很大误差.基于扩展卡尔曼滤波的移动长基线算法能有效融合内部和外部传感器信息,提高导航精度.仿真试验对此进行了验证.

关 键 词:导航系统  移动长基线  多UUV  协同导航与定位  扩展卡尔曼滤波

Cooperative navigation and localization for multiple UUVs
Li-chuan Zhang,De-min Xu,Ming-yong Liu,Wei-sheng Yan. Cooperative navigation and localization for multiple UUVs[J]. Journal of Marine Science and Application, 2009, 8(3): 216-221. DOI: 10.1007/s11804-009-8059-3
Authors:Li-chuan Zhang  De-min Xu  Ming-yong Liu  Wei-sheng Yan
Affiliation:1. College of Marine Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
Abstract:The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative navigation and localization for multi-UUVs is important to solve navigation problems that restrict long and deep excursions. The authors investigated improvements in navigation accuracy. In the moving long base line (MLBL) structure, the master UUV is equipped with a high precision navigation system as a node of the moving long baseline, and the slave UUV is equipped with a low precision navigation system. They are both equipped with acoustic devices to measure relative location. Using traditional triangulation methods to calculate the position of the slave UUV may cause a faulty solution. An EKF was designed to solve this, combining the proprioceptive and exteroceptive sensors. Research results proved that the navigational accuracy is improved significantly with the MLBL method based on EKF.
Keywords:navigation system  moving long baseline  multi-UUVs  cooperative navigation and localization  extended Kalman filter (EKF)
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号