首页 | 本学科首页   官方微博 | 高级检索  
     

基于模拟退火-自适应布谷鸟算法的城市公交调度优化研究
引用本文:赖元文,张杰. 基于模拟退火-自适应布谷鸟算法的城市公交调度优化研究[J]. 交通运输系统工程与信息, 2021, 21(1): 183-189. DOI: 10.16097/j.cnki.1009-6744.2021.01.028
作者姓名:赖元文  张杰
作者单位:1. 福州大学,土木工程学院,福州 350116;2. 宁德师范学院,信息与机电工程学院,福建 宁德 352100
摘    要:为改善城市常规公交运营效率,提出基于模拟退火-自适应布谷鸟算法的公交调度优化模型.通过结合线路实际客流数据反映的客流特征,建立考虑公交公司和乘客双方利益的公交调度优化模型;改进布谷鸟算法固定步长并加入模拟退火算法退火操作,设计模拟退火-自适应布谷鸟算法,改善寻优过程中跳出局部最优解而全局寻优的能力;以福州125路公交线...

关 键 词:城市交通  公交调度优化  模拟退火-自适应布谷鸟算法  发车间隔调整  公交资源节约
收稿时间:2020-09-23

Urban Bus Scheduling Optimization Based on Simulated Anneal-adaptive Cuckoo Search Algorithm
LAI Yuan-wen,ZHANG Jie. Urban Bus Scheduling Optimization Based on Simulated Anneal-adaptive Cuckoo Search Algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 183-189. DOI: 10.16097/j.cnki.1009-6744.2021.01.028
Authors:LAI Yuan-wen  ZHANG Jie
Affiliation:1. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China; 2. College of Information and Electrical Engineering, Ningde Normal University, Ningde 352100, Fujian, China
Abstract:In order to improve the operation efficiency of urban public transport, a public transport scheduling optimization model based on the Simulated Annealing- adaptive Cuckoo Search algorithm is proposed. With the passenger flow characteristics reflected by the actual passenger flow data of the route, a bus scheduling optimization model considering the interests of both the bus company and passengers is established. By improving the fixed step size of the Cuckoo Search algorithm and adding the annealing operation of the Simulated Annealing algorithm, the Simulated Annealing- adaptive Cuckoo Search algorithm is designed to improve its ability to jump out of the local optimal solution and find the global optimization in the optimization process. Finally, taking the No.125 bus line in Fuzhou as an example, the passenger flow characteristic data of this line is applied to the model and the solution algorithm. The results show that the results obtained by the model algorithm based on different stakeholder weights are better than the existing scheduling scheme, which verifies the effectiveness and practicality of models and algorithms.
Keywords:urban traffic  bus scheduling optimization  simulated annealing- adaptive Cuckoo search algorithm  departure interval adjustment  save bus resources  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号