首页 | 本学科首页   官方微博 | 高级检索  
     

基于轨迹数据的车辆跟驰行为分析与建模综述
作者姓名:田钧方  朱陈强  贾宁  马寿峰
作者单位:天津大学,管理与经济学部,天津 300072
基金项目:教育部人文社会科学研究青年基金/ Youth Project of Humanities and Social Sciences Financed by Ministry of Education(20YJC630069);中国国家铁路集团有限公司科技研究开发计划课题/ Project of Science and Technology Research and Development Plan of China National Railway Group Co., Ltd.(K2019Z006).
摘    要:随着轨迹收集技术与数据分析技术的迅速发展,越来越多的车辆行驶轨迹被采集并用于 交通流研究。车辆轨迹数据主要包括车辆运行的位置与时间等信息,利用这些信息可以推算出 车辆的速度、加速度及其与前车之间的空间和时间距离等驾驶行为参量。通过研究轨迹数据可 以揭示车辆自身的运行规律,车辆之间的相互作用规律,道路环境对车辆的作用规律,以及由此 产生的宏观、微观交通流现象,因此,轨迹数据研究受到日益重视。本文简要回顾了与轨迹数据 收集相关的历史,介绍了自然场景下采集的Next Generation SIMulation(NGSIM)数据及实验场景 下采集的车队轨迹数据,并梳理了近几年基于车辆跟驰轨迹的理论研究。首先,分析以交通振 荡、交通回滞为代表的交通流关键实测现象研究工作;整理跟驰行为分析方面的研究成果,包括 不对称跟驰行为、稳定跟驰行为的存在性、跟驰行为的记忆效应、任务难度、随机性、异质性。之 后,介绍基于跟驰行为分析成果而构建的仿真模型。最后,从3个方面评述现有基于轨迹数据的 研究,并提出未来展望:交通流关键实测现象方面,应收集更多不同条件下的数据,并尝试构建更 加普适性的理论或模型解释交通流现象;跟驰行为分析方面,可结合数据挖掘技术或生理、心理 理论,量化驾驶员跟驰特性与生理、心理特征,并将两者结合深入分析跟驰行为的机理;仿真建模 方面,可更多考虑驾驶员生理和心理变量,使模型更具人性化特征,并关注模型的评价方法,注重 模型对实际交通流的解释能力。

关 键 词:城市交通  交通流理论  交通流现象  跟驰行为  交通流模型  
收稿时间:2020-05-23
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号