首页 | 本学科首页   官方微博 | 高级检索  
     

基于试验数据的中低速磁浮列车电磁铁结构参数分析
引用本文:刘清辉, 马卫华, 单磊, 罗世辉, 刘静, 秦龙泉. 基于试验数据的中低速磁浮列车电磁铁结构参数分析[J]. 交通运输工程学报, 2023, 23(6): 232-243. doi: 10.19818/j.cnki.1671-1637.2023.06.015
作者姓名:刘清辉  马卫华  单磊  罗世辉  刘静  秦龙泉
作者单位:1.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031;;2.山东和顺电气有限公司,山东 肥城 271600
基金项目:国家自然科学基金项目51875483 四川省科技计划项目2021YJ0002
摘    要:为提高中低速磁浮列车的承载能力,基于等效磁路法建立了全尺寸悬浮电磁铁磁路模型,推导了包含悬浮电磁铁结构参数的垂向电磁力表达式;基于影响因素分析方法,对比研究了线圈匝数、电磁铁宽度、极板长度等结构参数对悬浮电磁铁垂向电磁力的影响;通过单电磁铁试验台对比了不同悬浮间隙和线圈电流下,线圈匝数分别为320和410时悬浮电磁铁垂向电磁力和浮重比的变化规律,验证了优化线圈匝数对提升中低速磁浮列车悬浮性能的可行性。研究结果表明:相比电磁铁宽度和极板长度,线圈匝数是影响磁浮列车悬浮性能的主要因素,但在10~30 A的小电流范围和大悬浮间隙(>10 mm)的范围内,改变线圈匝数对悬浮电磁铁垂向电磁力的提升效果较弱;当悬浮间隙为8 mm,线圈电流为30~50 A时,410匝悬浮电磁铁相对320匝悬浮电磁铁对悬浮电磁铁垂向电磁力的提升效果明显,平均垂向电磁力提升约2.94 kN,提升比例约为27.8%,平均浮重比提升约2.83,提升比例约为15.33%;随着线圈电流进一步增加,悬浮间隙进一步减小,平均垂向电磁力提升约3.38 kN,提升比例约为25.5%,平均浮重比提升约3.06,提升比例约为13.22%,说明当悬浮间隙为8 mm,线圈电流为30~50 A时,410匝悬浮电磁铁对中低速磁浮列车悬浮性能的提升效果最佳,而410匝悬浮电磁铁垂向电磁力的方差和标准差比320匝悬浮电磁铁的大,说明增加线圈匝数会使得悬浮电磁铁垂向电磁力对参数的变化更敏感。

关 键 词:车辆工程   中低速磁浮   电磁铁   等效磁路法   结构参数   单电磁铁试验
收稿时间:2023-06-11

Analysis of electromagnet structure parameters of medium and low speed maglev train based on test data
LIU Qing-hui, MA Wei-hua, SHAN Lei, LUO Shi-hui, LIU Jing, QIN Long-quan. Analysis of electromagnet structure parameters of medium and low speed maglev train based on test data[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 232-243. doi: 10.19818/j.cnki.1671-1637.2023.06.015
Authors:LIU Qing-hui  MA Wei-hua  SHAN Lei  LUO Shi-hui  LIU Jing  QIN Long-quan
Affiliation:1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;;2. Shandong Heshun Electric Co., Ltd., Feicheng 271600, Shandong, China
Abstract:To improve the carrying capacity of medium and low speed maglev trains, based on the equivalent magnetic circuit method, a full-size levitation electromagnet magnetic circuit model was established. In addition, the vertical electromagnetic force expression containing the levitation electromagnet structure parameters was deduced. According to the influence factor analysis method, the influences of structure parameters such as the number of coil turns, electromagnet width, and pole plate length on the vertical electromagnetic force of the levitation electromagnet were comparatively investigated. Through the single electromagnet test bench, the changes in the vertical electromagnetic forces and lift-to-weight ratios of levitation electromagnets with 410 and 320 coil turns were compared under different levitation gaps and coil currents. The feasibility of optimizing the coil turns to improve the levitation performance of medium and low speed maglev trains was verified. Research results show that compared with the electromagnet width and pole plate length, the coil turns is the main factor affecting the levitation performance of maglev trains, but in the small current range of 10-30 A and the large levitation gap (>10 mm), changing the coil turns has a weak effect on the enhancement of vertical electromagnetic force of the levitation electromagnet. When the levitation gap is 8 mm, and the current of the coil is 30-50 A, the levitation electromagnet with 410 coil turns is more effective than that with 320 coil turns in improving the vertical electromagnetic force of the levitation electromagnet, and the average vertical electromagnetic force increases by about 2.94 kN, with an enhancement ratio of about 27.8%. The average lift-to-weight ratio increases by about 2.83, and the enhancement ratio is about 15.33%. As the coil current further increases, and the levitation gap further reduces, the average vertical electromagnetic force increases by about 3.38 kN, and the enhancement ratio is about 25.5%. The average lift-to-weight ratio improves by about 3.06, and the enhancement ratio is about 13.22%. It shows that the levitation electromagnet with 410 coil turns has the best effect on improving the levitation performance of medium and low speed maglev trains when the levitation gap is 8 mm, and the coil current is 30-50 A. The variance and standard deviation of vertical electromagnetic force of the levitation electromagnet with 410 coil turns are greater than those with 320 coil turns, indicating that increasing the coil turns will make the vertical electromagnetic force of the levitation electromagnet more sensitive to parameter changes.
Keywords:vehicle engineering  medium and low speed maglev  electromagnet  equivalent magnetic circuit method  structure parameter  single electromagnet test
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号