首页 | 本学科首页   官方微博 | 高级检索  
     

强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤
引用本文:冯忠居, 陈慧芸, 王富春, 胡海波, 徐占慧, 姚贤华. 强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤[J]. 交通运输工程学报, 2023, 23(6): 156-167. doi: 10.19818/j.cnki.1671-1637.2023.06.009
作者姓名:冯忠居  陈慧芸  王富春  胡海波  徐占慧  姚贤华
作者单位:1.长安大学 公路学院,陕西 西安 710064;;2.西华大学 建筑与土木工程学院,四川 成都 610039;;3.浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;;4.青海省公路科研勘测设计院,青海 西宁 810008;;5.华北水利水电大学 土木与交通学院,河南 郑州 450045
基金项目:国家重点研发计划2018YFC1504801 青海省交通运输厅科技项目2014-07 福建省高速公路科技项目2018Y032
摘    要:为探明干湿循环与强盐沼泽腐蚀作用下桥梁桩基混凝土材料损伤机理,通过室内模拟试验,研究了不同材料质量比的混凝土浸入不同浓度复合盐溶液,经干湿循环后的质量损失率、相对动弹性模量和抗侵蚀系数;基于扫描电子显微镜(SEM)、能谱仪(EDS)和化学成分分析相结合的方法,研究了桩身混凝土抗腐蚀微观机理。研究结果表明:经干湿循环后混凝土质量增长是因为在材料内部生成了钙矾石、Friedel盐等膨胀性晶体,氯盐的存在能够抑制硫酸盐对于桩基混凝土的侵蚀作用;复合盐溶液浓度不同时,经过120次的干湿循环后,水泥、碎石、砂子、水、粉煤灰、减水剂、硅灰、膨胀剂质量比为327∶1 103∶767∶170∶87∶7∶22∶44(质量比Ⅲ)的桩基混凝土试件的相对动弹性模量为92.7%,抗侵蚀系数最小为0.91,而在未添加硅灰和膨胀剂的质量比与仅添加硅灰的质量比下桩基混凝土试件的相对动弹性模量最大为89.7%,抗侵蚀系数最小为0.80,质量比Ⅲ的桩基混凝土试件的抗侵蚀性能较好,桩基混凝土试件受到膨胀力但内部未产生裂缝,说明添加硅灰和膨胀剂提升了桩基混凝土的抗侵蚀能力且可以确保桩基混凝土不产生裂缝。可见,实际工程中可综合考虑区域内腐蚀性离子类别等因素,在质量比Ⅲ的基础上进一步优化桩基混凝土的质量比。

关 键 词:桥梁工程   强盐沼泽区   桩基腐蚀损伤机理   室内干湿循环试验   抗侵蚀系数
收稿时间:2023-06-15

Corrosion damage of bridge pile foundations under dry-wet cycles in strong salt marsh areas
FENG Zhong-ju, CHEN Hui-yun, WANG Fu-chun, HU Hai-bo, XU Zhan-hui, YAO Xian-hua. Corrosion damage of bridge pile foundations under dry-wet cycles in strong salt marsh areas[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 156-167. doi: 10.19818/j.cnki.1671-1637.2023.06.009
Authors:FENG Zhong-ju  CHEN Hui-yun  WANG Fu-chun  HU Hai-bo  XU Zhan-hui  YAO Xian-hua
Affiliation:1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China;;2. School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, Sichuan, China;;3. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China;;4. Highway Survey and Design Institute of Qinghai Province, Xining 810008, Qinghai, China;;5. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China
Abstract:To investigate the damage mechanism of concrete material of bridge pile foundations under the action of dry-wet cycles and strong salt marsh corrosion, indoor simulation tests were conducted, and the mass loss rates, relative dynamic elastic moduli, and corrosion resistance coefficients of the concretes with different material mass ratios immersed in composite salt solutions with different concentrations after dry-wet cycles were studied. The corrosion resistance micro-mechanisms of the concrete in pile bodies were investigated by using a combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and chemical composition analysis. Research results indicate that the increase in concrete mass after dry-wet cycles is due to the formation of expansive crystals such as calcium aluminate and Friedel's salt in the material. The presence of chloride ions can inhibit the corrosive effect of sulfate ions on pile foundation concrete. When the composite salt solution concentration is different, after 120 dry-wet cycles, for the pile foundation concrete specimens with a mass ratio of cement, aggregate, sand, water, fly ash, water reducer, silica fume, and expansion agent as 327∶1 103∶767∶170∶87∶7∶22:44 (mass ratio Ⅲ), the relative dynamic elastic modulus is 92.7%, and the minimum corrosion resistance coefficient is 0.91. In comparison, the pile foundation concrete specimens without silica fume and expansion agent or only with silica fume have a maximum relative dynamic elastic modulus of 89.7% and a minimum corrosion resistance coefficient of 0.80. The pile foundation concrete specimens with mass ratio Ⅲ exhibit better corrosion resistance performance and have no internal cracks even when they are subjected to the expansion force, indicating that the addition of silica fume and expansion agent improves the corrosion resistance of pile foundation concrete while ensuring no crack appears in the pile foundation concrete. Obviously, the factors such as the category of corrosive ions must be comprehensively considered, and further optimization of mass ratio of pile foundation concrete material must be carried out based on the mass ratio Ⅲ in practical engineering. 6 tabs, 12 figs, 30 refs.
Keywords:bridge engineering  strong salt marsh area  corrosion damage mechanism of pile foundation  indoor dry-wet cycle test  corrosion resistance coefficient
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号