首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化算法下的灰色系统船闸货运量预测
引用本文:杨星,王娅娜. 基于粒子群优化算法下的灰色系统船闸货运量预测[J]. 武汉理工大学学报(交通科学与工程版), 2011, 0(6)
作者姓名:杨星  王娅娜
作者单位:江苏省水利科学研究院;河海大学交通与海洋学院;
基金项目:国家自然科学基金项目资助(批准号:50479032)
摘    要:采用灰色系统理论,建立了基于GM(1,1)的船闸货运量预测模型.模型参数计算分别采用粒子群优化算法和最小二乘法,两者进行对比发现,预测误差相当,但是粒子群优化算法可以避免繁琐的矩阵运算而优于最小二乘法.应用基于粒子群优化算法的灰色系统模型进行了船闸货运量的预测.

关 键 词:粒子群优化  灰色理论  船闸  货运量  预测模型  

Forecast of the Lock Freight Volume Based on Grey System Theory and Particle Swarm Optimization
Yang Xing) Wang Yana))). Forecast of the Lock Freight Volume Based on Grey System Theory and Particle Swarm Optimization[J]. journal of wuhan university of technology(transportation science&engineering), 2011, 0(6)
Authors:Yang Xing) Wang Yana)))
Affiliation:Yang Xing1) Wang Yana2)(Jiangsu Hydraulic Research Institute,Nanjing 210017,China)1)(College of Traffic,Hohai University,Nanjing 210098,China)2)
Abstract:Based on the grey system theory,the GM(1,1) forecast model of the lock freight volume is established.The particle swarm optimization and the least square method are adopted respectively to compute the model parameters.Consequent results are analyzed and compared,which shows the particle swarm optimization is better than the least square method.The future lock freight volume is predicted by using the model and the grey forecast method based particle swarm optimization is recommended to be used in the waterwa...
Keywords:particle swarm optimization  grey theory  lock  freight volume  forecast model  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号