首页 | 本学科首页   官方微博 | 高级检索  
     

多项式基函数神经网络的结构可靠性分析
引用本文:李雪剑, 秦斌, 肖艺峰, 等. 改进随机森林−蒙特卡罗法在A型液舱支座结构可靠性分析中的应用[J]. 中国舰船研究, 2022, 17(1): 147–153, 165. doi: 10.19693/j.issn.1673-3185.02181
作者姓名:李雪剑  秦斌  肖艺峰  付泽坤
作者单位:1.江南造船(集团)有限责任公司 江南研究院,上海201913
摘    要:
  目的  随着液化天然气(LNG)船舶结构研究和设计深度的提高,需要有能够快速和准确地评估不确定性因素的可靠性分析方法。为此,提出基于改进随机森林−蒙特卡罗(RF-MC)法来解决A型独立液舱支座结构失效概率的计算问题。  方法  首先,根据不确定性因素的概率分布,使用MC法生成样本集;然后,以局部离群因子为准则,筛选出失效面附近的样本点,再对筛选出的样本点进行有限元计算后添加至训练集,通过重复训练随机森林近似模型,直至满足精度要求;最后,使用近似模型判别样本点是否失效,结合MC法计算结构的失效概率。
  结果  综合考虑算法的准确率、复杂度和效率并结合算例1和2,可以发现在分析可靠性问题时改进RF-MC法比MC和BP-MC等方法具有更大优势。算例3的应用结果表明了改进RF-MC法在A型独立液舱支座结构可靠性分析中的适用性。  结论  研究结果可为LNG船舶的优化设计提供可行的技术方案。


关 键 词:结构可靠性  局部离群因子  随机森林
收稿时间:2020-11-13
修稿时间:2021-01-15

Structural reliability analysis based on polynomial basis function neural network
LI X J, QIN B, XIAO Y F, et al. An improved random forest-Monte Carlo method and application for structural reliability analysis of A-type independent liquid tank support structure[J]. Chinese Journal of Ship Research, 2022, 17(1): 147–153, 165. doi: 10.19693/j.issn.1673-3185.02181
Authors:LI Xuejian  QIN Bin  XIAO Yifeng  FU Zekun
Affiliation:1.Jiangnan Institute of Technology, Jiangnan Shipyard (Group) Co., Ltd., Shanghai 201913, China
Abstract:
  Objectives  In response to the increasing depth of research and design on liquefied natural gas (LNG) ship structures, higher requirements are put forward for a reliability analysis method that can quickly and accurately evaluate uncertain factors. This paper proposes a method based on an improved random forest-Monte Carlo method (RF-MC) to solve the calculation of the failure probability of A-type independent liquid tank support structures.  Methods  First, the MC method is used to generate a sample set according to the probability distribution of uncertain factors, then take the local outlier factor (LOF) as the criterion for filtering out sample points near the failure surface. After selecting the sample points, they are calculated using finite element software and added to the training set to train the random forest (RF) model. The generation, filtering and training process is repeated until the approximate model meets the accuracy requirements.
Finally, the approximate model is used to determine whether the sample points are invalid, then combined with the MC method to calculate the failure probability of the structure.
  Results  Considering the accuracy, complexity and efficiency of the algorithm, and combined with Cases 1 and 2, it is found that the improved RF-MC method has better advantages than MC or biased probability (BP)-MC in analyzing reliability problems. The results of Case 3 show applicability of the method in reliability analysis of an A-type independent liquid tank support structure.  Conclusions  This study provides a feasible technical solution for future optimization design of liquefied gas carriers.
Keywords:structural reliability  local outlier factor  random forest
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号