首页 | 本学科首页   官方微博 | 高级检索  
     检索      

仿生层级薄壁方管的耐撞性研究
引用本文:白中浩,周存文,龚超,张林伟,谭雯霄,卜晓兵.仿生层级薄壁方管的耐撞性研究[J].中国公路学报,2020,33(1):181-190.
作者姓名:白中浩  周存文  龚超  张林伟  谭雯霄  卜晓兵
作者单位:1. 湖南大学汽车车身先进设计制造国家重点实验室, 湖南长沙 410082;2. 福建工程学院福建省汽车 电子与电驱动重点实验室, 福建福州 350118;3. 中国汽车技术研究中心有限公司, 天津 300300
基金项目:国家自然科学基金项目(51621004);福建工程学院科研创新平台开放基金项目(KF-X18001)
摘    要:为了进一步改善车辆结构部件的耐撞性能,基于甲虫翅鞘微观锥形小梁结构提出新颖的仿生层级薄壁方管(BHST)结构,包括SBHST-4,SBHST-9,BHST-4和BHST-9。通过非线性有限元软件和试验验证结果建立BHST有限元模型,并对比其与传统多胞薄壁方管结构的轴向吸能特性。考虑到结构壁厚、截面尺寸和空间位置因素对BHST-9结构耐撞性能的影响,采用参数分析方法,研究小方锥管下截面尺寸b分别和空间位置参数λ、结构壁厚t对BHST-9结构轴向吸能特性的影响。此外,结合径向基函数(RBF)神经网络代理模型技术与非支配排序遗传算法(NSGA-Ⅱ)对BHST-9结构进行多目标优化分析,以获取BHST-9结构的最优配置。研究结果表明:BHST-9结构呈现出较优异的轴向吸能效果,其比吸能较传统9胞薄壁方管在等质量的条件下提高了22.87%,初始峰值力降低了10.22%;适当增加结构壁厚和小方锥管下截面尺寸有利于提升BHST-9结构的吸能能力;随着λ的增加,BHST-9结构的比吸能呈现出先增后减的趋势,当λ为0.5时,不同下截面尺寸小方锥管的BHST-9结构整体上具有较高的比吸能和较稳定的折叠变形模式,且初始峰值力变化幅度较小,但BHST-9结构中的仿生小方锥管下截面尺寸和结构壁厚较空间位置参数对比吸能的提升作用更为显著;当BHST-9结构初始峰值力不高于140kN时,其最优设计参数t,b分别为1.61,24.67mm。

关 键 词:汽车工程  仿生层级薄壁方管  参数分析  耐撞性能  多目标优化
收稿时间:2019-03-26

Crashworthiness of Bio-inspired Hierarchical Thin-walled Square Tubes
BAI Zhong-hao,ZHOU Cun-wen,GONG Chao,ZHANG Lin-wei,TAN Wen-xiao,BU Xiao-bing.Crashworthiness of Bio-inspired Hierarchical Thin-walled Square Tubes[J].China Journal of Highway and Transport,2020,33(1):181-190.
Authors:BAI Zhong-hao  ZHOU Cun-wen  GONG Chao  ZHANG Lin-wei  TAN Wen-xiao  BU Xiao-bing
Institution:1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, Hunan, China;2. Fujian Key Laboratory of Automotive Electronics and Electric Drive, Fujian University of Technology, Fuzhou 350118, Fujian, China;3. China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China
Abstract:To further improve the crashworthiness of the structural components of vehicles, bio-inspired hierarchical thin-walled square tubes (BHSTs) inspired by the microstructure of conical trabecula in the beetle elytron were proposed, which included SBHST-4, SBHST-9, BHST-4, and BHST-9. According to the nonlinear finite-element software and experimental validation results, the finite-element models of BHSTs were established. In addition, the axial energy absorption characteristics of BHSTs and conventional multicell thin-walled square tubes were compared. BHST-9 exhibits superior axial energy absorption characteristics compared with conventional nine-cell thin-walled square tube; The specific energy absorption (Es) of BHST-9 is increased by 22.87%, and the initial peak crushing force (Fp) is reduced by 10.22% under equal mass. By considering the influence of the wall thickness, cross-sectional size, and spatial position on the crashworthiness of BHSTs, the effects of the lower cross-sectional size b, spatial position parameter λ of a small square cone, and structural wall thickness t on the axial energy absorption characteristics of BHST-9 were studied by using the parameter analysis method. In addition, to explore the optimal configuration of BHST-9, the multi-objective optimization of BHST-9 was carried out by combining the radial basis function (RBF) neural network proxy model and the nondominated sorting genetic algorithm (NSGA-Ⅱ). The results show that a reasonable increase in t and b is beneficial for improving the energy absorption capacity of BHST-9. With an increase in λ, the Es of BHST-9 increases first and then decreases. When λ was 0.5, BHST-9 with different b had higher Es and more stable folding deformation mode and the range of variation of Fp was small. However, the structural wall thickness and lower cross-sectional size of the bionic small square cone in BHST-9 were more significant in improving Es than λ. When Fp of BHST-9 was not greater than 140 kN, the optimal design parameters of t and b were 1.61 and 24.67 mm, respectively.
Keywords:automotive engineering  bio-inspired hierarchical thin-walled square tube  parameter analysis  crashworthiness  multi-objective optimization  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号